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Abstract. This paper studies various incompressible fluid systems
from an energetic point of view. Here incompressibility means that
the density of the fluid is a constant. In particular, we consider fluid
flow on a moving hypersurface. A moving hypersurface means that
the hypersurface is moving or the shape of the hypersurface is chan-
ging along with the time. From an energetic point of view, we study
the dominant equations for the motion of the fluid on a moving hyp-
ersurface.

1. Introduction

Image a soap bubble in air in the sun:
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Figure 1. Soap Bubble in Air in the Sun
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Of course, a soap bubble is floated by the wind and the shape of the
bubble is changed by the gravity. When we focus on the soap bubble,
we can see fluid flow in the bubble. The flow is often called a surface
flow or an interfacial flow. Surface flow and surface tension play an
important role in a soap bubble in air. One can consider surface flow as
fluid flow on a moving hypersurface. We are interested in the dominant
equations for the motion of the fluid on a moving hypersurface.

In this paper we study various fluid systems from an energetic point
of view. More precisely, we consider fluid systems in a domain, on a
manifold, and on a moving hypersurface. In particular, we treat the
case when the density of the fluid is a constant. This property is often
called incompressibility. In this paper we introduce incompressible fluid
system on a moving hypersurface, derived by our energetic variational
approach.

Outline of this paper is as follows: In Section 2 we study basic ter-
minology in fluid dynamics, and consider both kinetic and dissipation
energies of incompressible fluid systems in a domain. In Section 3 we
introduce the incompressible inviscid fluid system, derived by Arnold
[2, 3], on a manifold and the incompressible viscous fluid system, de-
rived by Taylor [7], on a manifold. Section 3 describes Taylor’s ar-
gument for deriving his incompressible fluid system. In Section 4 we
introduce incompressible fluid systems on a moving hyperspace, which
is derived by our energetic variational approach. We state main results
and key ideas for incompressible inviscid fluid system on a moving hy-
persurface. In the final section, we refer to the comparison between
our models and the previous models.

2. Fluid Mechanics
Let us first study basic terminology in fluid dynamics. When we

study fluid flow in a domain or on a surface, we need to consider the
density of the fluid, the velocity of the fluid, the pressure of the fluid,
and the viscosity of the fluid. In fluid dynamics, fluid is classified as
follows:

Fluid−

{
Inviscid fluid [Ideal fluid]

Viscosity fluid[Liquid(Water), Gas(Air)]

Fluid−

{
Compressible fluid [Density is a function]

Incompressible fluid [Density is a constant]

Remark: To be exact, we call fluid incompressible fluid if the material
derivative of the density equals to zero, that is, Dtρ = 0. Here Dt

denotes the material derivative (see this latter part).
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From now we consider incompressible fluid flow in a domain, on a
manifold, and on a moving hypersurface. In other words, we treat the
case when the density of the fluid is a constant. In particular, we study
the incompressible Euler and Navier-Stokes systems:

Fluid systems−

{
Euler system [Inviscid fluid system]

Navier-Stokes system [Viscosity fluid system]

流体力学の用語� �
Fluid flow: 流体の流れ, Velocity v = t(v1, v2, v3): 流体の速さ
Pressure p: 流体の圧力, Density ρ: 流体の密度
Viscosity µ: 流体の粘性 (係数)
Inviscid fluid: 非粘性流体, Viscosity fluid: 粘性流体
Compressible fluid: 圧縮性流体, Incompressible fluid:非圧縮性流体
Euler system: 非粘性流体の流れを支配する流体方程式
Navier-Stokes system: 粘性流体の流れを支配する流体方程式
Incompressible Euler system: 非粘性非圧縮性流体方程式
Incompressible Navier-Stokes system: 粘性非圧縮性流体方程式� �
Let us introduce the well-known incompressible Euler system and

incompressible Navier-Stokes system in a domain. Let Ω be a domain
in R3. Let t ≥ 0 be the time variable and x = t(x1, x2, x3) ∈ R3 be the
spatial variables.

The symbols v = v(x, t) = t(v1(x, t), v2(x, t), v3(x, t)), p = p(x, t),
and ρ = ρ(x, t) represent the velocity of the fluid in the domain Ω, the
pressure of the fluid in Ω, and the density of the fluid in Ω, respectively.
The symbol µ is the viscosity coefficient of the fluid in Ω. Assume that
v, p are smooth functions and that ρ0, µ are two positive constants.
Suppose that ρ ≡ ρ0.

Incompressible Euler system in a domain� �
(E)

{
ρ0Dtv + gradp = 0,

divv = 0.� �
Incompressible Navier-Stokes system in a domain� �

(NS)

{
ρ0Dtv + gradp = µ∆v,

divv = 0.� �
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Here

∂t =
∂
∂t

: time derivative,

∂i =
∂
∂xi

: space derivative,

∇ = t(∂1, ∂2, ∂3) : space derivative,

∆ = ∂2
1 + ∂2

2 + ∂2
3 : Laplacian,

(v,∇)f = v1∂1f + v2∂2f + v3∂3f : derivative along with velocity v,

Dtf = ∂tf + (v,∇)f : material derivative,

gradp = ∇p = t(∂1p, ∂2p, ∂3p) : gradient,

divv = ∇ · v = ∂1v1 + ∂2v2 + ∂3v3 : divergence.

We call Dtv the nonlinear part, gradp the pressure part, and µ∆v the
viscous part of the fluid system.

Let us consider the viscous part µ∆v and some energies of the fluid
in a domain. Now we assume that ρ is a function. Write

D(v) =
1

2
{(∇v)T +∇v}.

We call D(·) a deformation tensor. A direct calculation shows that

2µdivD(v) = µ∆v if divv = 0.

Set

eK =
1

2
ρ|v|2 and eD = 2µD(v) : D(v).

We call eK kinetic energy and eD dissipation energy of incompressible
fluid in a domain.

Let us derive the kinetic and dissipation energies. Assume that v ∈
C((0, T ); [W 1,2

0 (Ω)]3). Multiplying the system (NS) by the v, and then
integrating by parts shows that for all t > s ≥ 0∫

Ω

1

2
ρ(x, t)|v(x, t)|2dx+

∫ t

s

∫
Ω

µD(v(x, τ)) : D(v(x, τ))dxdτ

=

∫
Ω

1

2
ρ(x, s)|v(x, s)|2dx · · · (EE).

We call (EE) an energy equality. From (EE) we can derive the following
asymptotic stability :

lim
t→∞

∫
Ω

|v(x, t)|2dx = 0 · · · (AS).

Remark: It is easy to show (AS) if Ω is a bounded domain. It is not
easy to derive (AS) if Ω is an unbounded domain.
用語: Deformation tensor: 変形テンソル, Kinetic energy: 運動エネル
ギー, Dissipation energy: 散逸エネルギー
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3. Incompressible Fluid Flow Systems on Manifold

Let us study the incompressible Euler system on a manifold derived
by Arnold [2, 3] and the incompressible Navier-Stokes system on a
manifold introduced by Taylor [7].

LetM be a closed Riemannian 2-dimensional manifold, and let µ > 0
be the viscosity coefficients of the fluid on M. Let ρ be the density of
the fluid on M. Let u be the velocity of the fluid on M, and let p be
a pressure associated with u. Suppose that ρ ≡ 1. Assume that u is a
1-form on M and that p is a function on M.

M

u
TM

Figure 2. Flow on a Manifold

Arnold [2, 3] applied the kinetic energy
1

2
|u|2 and the Lie group of

diffeomorphisms to derive the following Euler system on a manifold M:

(E)M

{
∂tu+∇uu+ gradMp = 0,

divMu = 0.

See also Ebin-Marsden [4].
Taylor [7] introduced the following Navier-Stokes system, derived

from their physical sense, on a manifold M:

(NS)M

{
∂tu+∇uu+ gradMp = µ(∆Mu+Ku),

divMu = 0.

Here

∆M : the Bochner-Laplacian,

K : the Gaussian curvature (the Ricci curvature),

gradM : gradient operator on M,

divM : divergence operator on M,

∇uu : covariant derivative along with the velocity u.

Remark: The operators ∆M, gradM, and divM are defined by exterior
derivatives.
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Mitsumatsu and Yano [6] also derived the system (NS)M by using
their energetic variational approach. Arnaudon and Cruzeiro [1] ap-
plied stochastic variational approach to derive the system (NS)M.

Let us roughly explain Taylor’s method for deriving the Navier-
Stokes system on a manifold. Set

DM(u) =
1

2
{(∇Mu)T +∇Mu}.

Here ∇M is the covariant derivative operator on M.
If divMu = 0 and u is a 1-form, then

2divMDM(u) = divM{(∇Mu)T + (∇Mu)T} = ∆Bv +Ric(u),

where ∆B = −∇∗
M∇M (Bochner-Laplacian, Laplace-Beltrami) and Ric

is the Ricci operator: TM into itself. Here ∇∗
M is the adjoint operator

with respect to L2(M, TM).

Taylor assumed that (u, p) satisfy{
∂tu+∇uu+ gradMp = 2µdivMDM(u),

divMu = 0.

Then {
∂tu+∇uu+ gradMp = µ∆Bu+ µRic(u),

divMu = 0.

Using the Weitzenböck formula:

∆Bu = ∆Hu+Ric(u),

we have

(NS)M

{
∂tu+∇uu+ gradMp = µ∆Hu+ 2µRic(u),

divMu = 0.

Here ∆H is the Hodge Laplacian (Laplace-deRham operator).

Remark: Mitsumatsu-Yano [6] and Arnaudon-Cruzeiro [1] considered

2µDM(u) : DM(u)

as the dissipation energy of the incompressible fluid on a manifold to
derive the viscous part of the system (NS)M:

2µdivMDM(u).
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4. Fluid Flow Systems on Moving Hypersurface

In this section we introduce incompressible fluid systems on a moving
hypersurface, derived by our energetic variational approach. Let x =
t(x1, x2, x3) be the spatial variable in R3 and t ≥ 0 be the time variable.
Let Γ(t) be a hypersurface in R3 depending on time t ∈ [0, T ) for some
T ∈ (0,∞]. Let w = t(w1, w2, w3) be the motion velocity of Γ(t), and
u = t(u1, u2, u3) be a relative velocity on Γ(t).

Γ(t0)

Γ(t0 + t)

w(t0)

u(t0)

Γ(t0 + 2t)

w(t0 + t)

w(t0 + 2t)

u(t0 + t)

u(t0 + 2t)

Figure 3. Flows on a Moving Hypersurface

The velocity

v = t(v1, v2, v3) := u+ w

is called a total velocity of the fluid on Γ(t). We focus on the total ve-
locity v. The symbol q denotes a total pressure or a pressure associated
with v. Let ρ and µ be the density and viscosity of the fluid on Γ(t),
respectively. Write

ST =

{
(x, t) ∈ R4; (x, t) ∈

∪
0<t<T

{
Γ(t)× {t}

}}
.

We assume that Γ(t) is a 2-dimensional closed manifold for each fixed
t ∈ [0, T ). Set

C∞(ST ) = {f : ST → R; f = g|ST
for some g ∈ C∞(R4)},

C∞
0 (ST ) = {f ∈ C∞(ST ); supp f(·, t) ⊂ Γ(t)}.

Assume that ρ, u, w, v, q are smooth functions represented by

ρ = ρ(x, t), u = u(x, t), w = w(x, t), v = v(x, t), q = q(x, t),

i.e. ρ, u, w, v, q ∈ C∞(ST ). Suppose that µ is a positive constant.
In order to consider incompressible fluid flow on an moving hypersur-

face, we assume that ρ is a positive constant ρ0. Moreover, we assume
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that 0 ≤ t < T ∫
Γ(t)

H(x, t)n(x, t) · w(x, t) dH2
x = 0,

where H is the mean curvature, n is the unit outer normal vector, and
dH2

x is 2-dimensional Hausdorff measure.
Now we introduce incompressible fluid system on the moving hyper-

surface. Applying our energetic variational approach, we derive the
following incompressible fluid systems:

Incompressible inviscid fluid system (I)� �{
ρ0Dtv + gradΓq + qHn = 0,

divΓv = 0.� �
Incompressible inviscid fluid system (II)� �

(E)Γ


ρ0D

Γ
t v + gradΓq = 0,

divΓv = 0,

v · n = 0.� �
Incompressible viscous fluid system (I)� �{

ρ0Dtv + gradΓq + qHn = 2µdivΓDΓ(v),

divΓv = 0.� �
Incompressible viscous fluid system (II)� �

(NS)Γ


ρ0D

Γ
t v + gradΓq = 2µPΓdivΓDΓ(v),

divΓv = 0,

v · n = 0.� �
Here n = n(x, t) = t(n1, n2, n3): unit outer normal vector,



ρ0 > 0 : density,

v = t(v1, v2, v3) : velocity,

q : pressure ,

µ : viscosity,

H : mean curvature,



divΓ : surface divergence,

gradΓ : surface gradient,

PΓ : orthogonal projection to tangent,

Dt : material derivative,

DΓ
t : surface material derivative,

DΓ(·) : surface deformation tensor,
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where

∂tan
i = (δij − ninj)∂j,

∇tan = t(∂tan
1 , ∂tan

2 , ∂tan
3 ),

gradΓq = ∇tanq = t(∂tan
1 q, ∂tan

2 q, ∂tan
3 q),

divΓv = ∇tan · v = ∂tan
1 v1 + ∂tan

2 v2 + ∂tan
3 v3,

Dtf = ∂tf + (v,∇)f,

DΓ
t f = ∂tf + (v,∇tan)f.

Remark; Roughly speaking, the two systems (E)Γ and (NS)Γ corre-
spond to fluid systems in the case when the hypersurface is fixed.

Let us state key ideas to derive our incompressible fluid systems.
The first one is to focus on both kinetic and dissipation energies of the
incompressible fluid on a moving hypersurface. The second one is to
apply a flow map on the moving hypersurface. Let us introduce a flow
map on a moving hypersurface. Let Γ(t) be a moving hypersurface.
We call a smooth function x = x(ξ, t) = t(x1, x2, x3) a flow map on
Γ(t) if there is smooth function v = v(x, t) = t(v1, v2, v3) such that for
0 < t < T and ξ ∈ Γ(0),{

dx
dt
(ξ, t) = v(x(ξ, t), t),

x(ξ, 0) = ξ.

We call v the velocity determined by x. We assume that v is the total
velocity on Γ(t).

Next we state main results for the incompressible inviscid fluid sys-
tem on a moving hypersurface.

Theorem 1(Incompressible condition)� �
Let Γ(t) be a moving hypersurface and ρ0 be a positive constant.
For each 0 < t < T and every Ω(t) ⊂ Γ(t) is flowed by the velocity
vector v = t(v1, v2, v3), assume that

d

dt

∫
Ω(t)

ρ0 dH2
x = 0.

Then
divΓv = 0.

Here dH2
x denotes the 2-dimensional Hausdorff measure.� �
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Remark: We call the condition that divΓv = 0 surface divergence free.
The surface divergence free condition implies surface area preserving
of the moving hypersurface Γ(t).

Theorem 2(Necessary condition for existence of incompressible flow)� �
Let Γ(t) be a moving hypersurface. Assume that v = u + w and
that u · n = 0. If

divΓv = 0,

then ∫
Γ(t)

H(x, t)n(x, t) · w(x, t) dH2
x = 0.

Here dH2
x denotes the 2-dimensional Hausdorff measure.� �

Remark: The motion condition
∫
Γ(t)

H(x, t)n(x, t) · w(x, t) dH2
x = 0

is important for the existence of incompressible flow on the moving
hypersurface.

Theorem 3(Variation of kinetic energy)� �
Let Γ(t) be a moving hypersurface and ρ0 be a positive constant.
Let x be a flow map on Γ(t) and v be the velocity determined by
x. Assume that v is the total velocity on Γ(t) and that divΓv = 0.

Let Γ̂(t) be a variation of Γ(t). Let x̂ be a flow map on Γ̂(t) and v̂
be the velocity determined by x̂. Suppose that x̂ is variation of x
and that v̂ is a variation of v. For each variation x̂ with divΓv̂ = 0,
set

Act[x̂] =

∫ T

0

∫
Γ̂(t)

1

2
ρ0|v̂(x, t)|2 dH2

xdt.

A critical point of the action integral Act[·] under area conserving
surface (domain) deformation fulfills

ρ0Dtv +∇tanq + qHn = 0

for some q. Moreover, assume in addition that v · n = 0. Then

ρ0D
Γ
t v +∇tanq = 0.� �

Combining Theorems 1-3, we can derive inviscid incompressible fluid
systems on a moving hypersurface.

Remark: See Giga-Koba-Liu [5] for the proof of Theorems 1-3, the dis-
sipation energy of incompressible fluid on a moving hypersurface, and
the derivation of the viscous parts 2µdivΓDΓ(v) and 2µPΓdivΓDΓ(v).
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5. Comparison with Previous Models

Let us compare the system (E)Γ with the Euler system (E)M derived
by Arnold [2, 3] and the system (NS)Γ with the Navier-Stokes system
(NS)M introduced by Taylor [7]. If ρ0 = 1 and v is a tangent vector
on the surface, the incompressible fluid system (E)Γ is noting but the
Euler system on a manifold. The system (E)Γ with ρ0 = 1 and PΓv = v
is same as the Euler system on a manifold derived by Arnold. However,
when ρ0 = 1, µ > 0, and PΓv = v, our model (NS)Γ is different from
the Navier-Stokes system (NS)M on a manifold introduced by Taylor.
See [5] for details.
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