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Yamabe equation: Introduction

M closed smooth manifold

g = 〈 , 〉x Riemannian metric on M.

Look for metrics of constant scalar curvature in the conformal class

[g] = {f .g : f : M → R>0}.
It amounts to solving the Yamabe equation:

−an∆gu + sgu = λ up−1

an = 4(n−1)
n−2 , sg the scalar curvature, p = pn = 2n

n−2 ,

λ ∈ R is the scalar curvature of up−2g.
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Sign of λ is determined by [g].
Yamabe equation is the Euler-Lagrange equation for
the Hilbert-Einstein functional restricted to [g]:

S(h) =

∫
M sh dvolh

Vol(M,h)
n−2

n

Let the Yamabe constant of (M, [g]) be

Y (M, [g]) = inf
h∈[g]

S(h) = inf
f

∫
M an‖∇f‖2 + sg f 2dvolg(∫

M f pdvolg
)2/p
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1 Infimum in the definition of Y (M, [g]) is always achived
H. Yamabe-N. Trudinger-T. Aubin-R. Schoen. There is
always at least one (volume 1) solution of the Yamabe
equation.

2 Solution is unique if Y (M, [g]) ≤ 0.

3 Solution is unique if g is Einstein (M. Obata).

4 In general multiple solutions when Y(M,[g]) >0
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(M,g) non-compact Riemannian manifold
Consider the case sg positive, constant.
Define its Yamabe constant by:

Y (M, [g]) = inf
f

Yg(f ) = inf
f

∫
M an‖∇f‖2 + sg f 2dvolg(∫

M f pdvolg
)2/p

= inf
f

Q(f )

‖f‖2p
.

f 6= 0, f ∈ L2
1(M,g), assume that the embedding L2

1 ⊂ Lp holds
(positive injectivity radius and bounded Ricci curvature).
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Questions

1 Compute (O. Kobayashi, R. Schoen)

Y (M) = sup{[g]} Y (M, [g]) ≤ Y (Sn, [gn
0 ])

(T. Aubin).

2 Find all solutions of the Yamabe equation on [g].

Can we solved the Yamabe equation on (Sn × Sm,gn
0 + Tgm

0 )
(T > 0, n,m ≥ 2 ), compute the Yamabe constants ?

Solution is not unique for T big (or small).
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Noncompact manifolds appear:

lim
T→∞

Y (Sn × Sm, [gn
0 + Tgm

0 ])) = Y (Sn × Rm,gn
0 + gE )

(K. Akutagawa-L. Florit-J. Petean)

It is fundamental for understanding the behavior of Y (M) under
codim k ≥ 3-surgery

Y (M) ≥ inf{Y (M), c(n, k)}

(B. Ammann-M. Dahl-E. Humbert), generalizing the case of
0-surgery (Kobayashi) Y (M) ≥ Y (M).
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Stability, Compact case

(M,g) with constant positive scalar curvature, u smooth
function on M

hu(t) = Yg(1 + tu)

Since sg is constant h′u(0) = 0. If g were a Yamabe metric then
h′′u(0) ≥ 0.
In general if the inequality holds for all u we say that g is a
stable solution of the Yamabe equation.
Standard computation:

h′′u(0) =
2

V 2/p

(
Q(u)− sg(p − 1)

∫
M

u2 +
(p − 2)sg

V

(∫
M

u
)2
)
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Then g is stable if for all u such that
∫

u = 0 one has
an‖∇u‖22 − (p − 2)sg‖u‖22 ≥ 0 which means

λ1(g) ≥
sg

n − 1
.

In particular this holds for any Yamabe metric.
For some canonical metric g we might want to study stability for
other solutions of the Yamabe equation, and write everything in
terms of g.
Consider for instance (S3 × S1,g3

0 + Tdt2) (all solutions known
(O. Kobayashi, R. Schoen), minimizer is the only stable one)
(S2 × S2,g2

0 + Tg2
0) (there are solutions computed numerically,

candidate for minimizer).
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Let (X ,h) has constant positive scalar curvature, f ∈ L2
1(X ) be

a smooth positive solution of the Yamabe equation.
Then f is stable if for all u ∈ L2

1(X ) such that
∫

f p−1u dvh = 0
we have

Qh(u)∫
X f p−2u2dvh

≥ (p − 1)
Qh(f )

‖f‖pp
Let

α(X ,h, f ) = inf
u∈N(h,f )

Qh(u)∫
X f p−2u2dvh

.
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Consider (Mm,g) closed with positive constant scalar curvature
and (X ,h) = (M × Rn,g + gn

E ).
f a critical point of Yh which is a smooth radial decreasing
positive function on Rn.

Theorem
Exists u ∈ N(g + gn

E , f ) which achieves the infimum in the
definition of α(M × Rn,g + gn

E , f ). Every minimizer is a smooth
function which solves the equation

−an∆u + (sg − αf p−2)u = 0 (1)

The space of solutions of this equation is finite dimensional.
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Stability, YRn-minimizer

(M,g) closed, constant positive scalar curvature. gn
E the

Euclidean metric on Rn. Assume that m,n ≥ 2.

For a Riemannian product (Z ,G) = (M1 ×M2,g + h) consider
the restricion of YG to functions on one of the variables and let

YMi (Z ,G) = inf
u∈L2

1(Mi )
YG(u).

YRn (M × Rn,g + gn
E ) can be computed in terms of the best

constant in the Gagliardo-Nirenberg inequality (K. Akutagawa,
L. Florit, J. Petean):
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Gagliardo-Nirenberg inequality

‖u‖2pm+n ≤ σ‖∇u‖
2n

m+n
2 ‖u‖

2m
m+n
2 .

invariant by replacing u by cuλ(x) = cu(λx). The best constant
is

σm,n =

 inf
u∈C∞0 (Rn)−{0}

‖∇u‖
2n

m+n
2 ‖u‖

2m
m+n
2

‖u‖2pm+n

−1

.

Stability for the Yamabe equation on non-compact manifolds



The infimum is actually achieved. The minimizer is a solution of
the Euler-Lagrange equation of the functional in parenthesis:

−n∆u + m
‖∇u‖22
‖u‖22

u − (m + n)
‖∇u‖22
‖u‖pp

up−1 = 0. (2)

By invariance if a function u is a minimizer so is cuλ given by
cuλ(x) = cu(λx) for any constants c, λ ∈ R>0.
By picking c, λ appriopriately we can choose the (constant)
coefficients appearing in the equation. In particular one would
have a solution of

−∆u + u − up−1 = 0 (3)
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It is known since classical work of Gidas-Ni-Nirenberg that all
solutions of (3), which are positive and vanish at infinity, are
radial functions. It is also known the existence of a radial
solution. Moreover, M. K. Kwong proved that such a solution is
unique.
In our situation we will prefer to first choose λ so that
am+nm‖∇u‖22 = nsg‖u‖22 and then pick c so that
(m + n)am+n‖∇u‖22 = sgn‖u‖pp. Then the resulting function fK
satisfies

−am+n∆fK + sg fK = sg f p−1
K (4)
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The metric gK = f p−2
K (g + gn

E ) has scalar curvature sgK = sg
A minimizer for YRn (M × Rn,g + gn

E ) must be a solution of (4).
And by the previous comments the solution is unique, so
actually the solution f m,n,sg

K is the unique minimizer for
YRn (M × Rn,g + gn

E ). We have

YRn (M × Rn,g + gn
E ) = sgVol(gK )

2
m+n .

which can be expressed in terms of σm,n and the volume of g.
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Let g be a Riemannian metric on the closed m-manifold M of
constant scalar curvature sg = m(m − 1). To simplify we will
use the notation G = g + gn

E , N = m + n Let f : Rn → R>0 be
the unique solution of equation (4) discussed in the previous
section.
Note that QG(f ) = m(m − 1)‖f‖pp V .

Lemma
If α = α(M ×Rn,G, f ) < (p− 1)m(m− 1) then it is realized by a
function u(y , x) = a(y)b(x) where a : M → R , −∆ga = λ1a, λ1
is the first positive eigenvalue, and b ∈ L2

1(Rn) satisties the
equation:

−aN∆b +
(
−aNλ1 + m(m − 1)− αf p−2

)
b = 0 (5)
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By previous Theorem there exists a minimizer and it is a
solution of the equation

−aN∆u +
(

m(m − 1)− αf p−2
)

u = 0

(and the space of solutions is finite dimensional). f depends
only on Rn : if u is a solution then ∆gu is also a solution.
It follows that there is a finite number of linearly independent
∆g- eigenfunctions a1(y), ...,ak (y), ∆gai = λiai (λi ≤ 0),
such that u = Σai(y)bi(x) for some bi : Rn → R.
Then

Σk
i=1 − aN(λiai(y)bi(x)

+ai(y)∆bi(x)) + (m(m − 1)− αf p−2) ai(y)bi(x) = 0.
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But then since the ai are linearly independent it follows that for
each i

−aN(λibi(x) + ∆bi(x)) +
(

m(m − 1)− αf p−2
)

bi(x) = 0.

So aibi is also a solution for each i : there is a minimizer of the
form a(y)b(x) with −∆ga = λa for some λ ≥ 0.
If λ = 0 we take a = 1 and then we must have

∫
Rn bf p−1dx = 0.

Since f is a YRn -minimizer it is Rn-stable we would have

α(M × Rn,G, f ) ≥ (p − 1)
EG(f )

‖f‖pp
= (p − 1)m(m − 1)

If λ > 0 note that

QG(ab)∫
Rn f p−2a2b2 =

∫
Rn aN‖∇b‖22 + sgb2∫

Rn f p−2b2 + aNλ

∫
Rn b2∫

Rn f p−2b2 .
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Therefore f is unstable if and only if exists b ∈ L2
1(Rn)− {0}

∫
Rn aN‖∇b‖22 + m(m − 1)b2∫

Rn f p−2b2 +aNλ1

∫
Rn b2∫

Rn f p−2b2 < (p−1)m(m−1)

Lemma
For each λ ≥ 0

A(λ) = inf
b∈L2

1(Rn)−{0}

∫
Rn aN‖∇b‖22 + sgb2∫

Rn f p−2b2 + λ

∫
Rn b2∫

Rn f p−2b2

is realized by a radial decreasing function.
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Then A(λ) is strictly increasing function of λ.
A(0) ≤ m(m − 1) (take b = f ) and A(∞) =∞.
Then exists a unique λ = λm,n such that
A(λm,n) = (p − 1)m(m − 1).
It follows that f is unstable if and only if λ1 < λm,n.
Recall that if g is a Yamabe metric on Mmwith scalar curvature
m(m − 1) then λ1(g) ≥ m.

Theorem

If λm,n ≤ m then f p−2(g + gn
E ) is stable for any Yamabe metric g
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λm,n can be computed numerically. The minimizer b for A(λm,n)
is a solution of

−aN∆b + (m(m − 1) + aNλm,n)b = (p − 1)m(m − 1)f p−2b.

In general consider the equation

−∆b + Kb = Cf p−2b, (6)

where C = (p − 1)m(m − 1)/aN and K is a (variable) positive
constant. A radial solution is given by a solution of the ordinary
linear differential equation:

u′′(t) +
n − 1

t
u′(t) + (Cf p−2 − K )u(t) = 0 (7)

with u(0) = 1, u′(0) = 0.
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Denote the solution u by uK . We have 3 possibilities:

a) uK is always decreasing and positive.

b) uK (t) = 0 for some t > 0.

c) uK has a local minimum at some t ≥ t0.

By Sturm comparison, K1 < K2, if the solution uK1 verifies (c)
then the solution uK2 also verifies (c). If uK2 verifies (b) then uK1

also verifies (b). Moreover if uK2 verifies (a) then uK1 verifies (b).
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It follows that for λ = λm,n the equation

u′′(t) +
n − 1

t
u′(t) +

(
Cf p−2 −

(
m(m − 1)

aN
+ λ

))
u(t) = 0 (8)

is positive and decreasing.
For λ > λm,n the solution has a local minimum and for λ < λm,n
has a 0 at finite time. The function f can be computed
numerically and then for a fixed λ one can compute numerically
the solution of (8) and check whether λ < λm,n or λ > λm,n.
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For example:

λ2,2 ≈ 1.8041

λ3,2 ≈ 2.9183

λ4,2 ≈ 3.9553

λ5,2 ≈ 4.9718
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Thank you !!
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