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図 1. Elliptic paraboloids z = x2 + y2 and z = 2x2 + y2
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Vector fields on surfaces
Let

S ⊂ R3

be a surface embedded in R3. We consider vector fields on S.

図 2. Vector fields on a sphere and a torus

Taking a local parametrization

f : (U 2;u, v) → S(⊂)R3

of the surface, we can (locally) indicate the vector fields on the
uv-plane.
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Indices of vector fields
X : a vector field on U ⊂ (R2; u, v)，
p: an isolated zero of X .

γ(t) := p + ε(cos t, sin t),

where ε is a sufficiently small number. Then the winding number
of the map

S1 � (cos t, sin t) �→ Xγ(t)

|Xγ(t)| ∈ S1

is called the index of the vector field of X at p.

index index

index index

図 3. Vector fields on the uv-plane
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The Poincare-Hopf index formula
S: an oriented closed surface

図 4. embedded closed surfaces

X : a vector field on S,
p1, ..., pn: the zeros of X on S,
Then the Poincare-Hopf index formula asserts that

I(p1) + · · · + I(pn) = χ(S),

where I(pj) = Indpj(X) is the index of X at pj.
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Indices of directional vector fields
Instead of vector field, we consider an assignment

S � p �→ Lp : a line passing through p

called a direction field. It induces a flow without orientation on
the surface.

indexindex

図 5. The curvature line flows of the ellipsoid x2/a2 + y2/b2 + z2/c2 = 1

On can compute the index at an isolated singular point of a given
direction field as same as the case of vector fields.
It takes values in half-integers, in general.
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Examples of direction fields

index index

図 6. Examples of direction fields

The above figure indicates the eigen flows of symmetric matrices

A =

(
u v
v −u

)
, B =

(
u −v
−v −u

)
.

Let
p1, ..., pn

be the set of isolated singular points of the direction field of the
closed surface S. We denote by I(pj) the index at pj. Then, it
holds that

I(p1) + · · · + I(pn) = χ(S),

which is the Poincare-Hopf index formula for direction fields.
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Umbilics on surfaces
U ⊂ (R2;u, v); a domain，

f : U → R3; an immersion，

ν :=
fu × fv
|fu × fv|

is a unit normal vector field on U . The three functions

E := fu · fu, F := fu · fv, G := fv · fv.
are called the coefficients of the first fundamental form. Also, the
coefficients of the second fundamental form are given by

L := fuu · ν, M := fuv · ν, N := fvv · ν.
Then the eigenvalues of the matrix

Af :=

(
E F
F G

)−1(
L M
M N

)

are principal curvatures, and their eigenvectors correspond to the
principal directions.

図 7. The graphs of z = u3 − 3uv2(= Re(z3)) and z = u3 + uv2(= Re(z2z̄))

The eigenflow of the matrix Af is called the curvature line flow.
The umbilics correspond to the diagonal points of Af .
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Loewner’s conjecture
By the Poincare-Hopf index formula,

• the total sum of indices of all umbilics on a convex surface is
equal to 2.

図 8. The upper half of 3x2 + 2y2 + z2 = 1

• Is the number of umbilics on a convex surface greater than or
equal to 2? (Caratheodory’s conjecture).

• Is the indices of umbilics on a regular surface less than or equal
to one? （Loewner’s conjecture）．
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Bates’ example

• Larry Bates，A weak counterexample to the Carathéodory
conjecture, Differential Geometry and its Applications, 15
(2001) 79–80．

図 9. Bates’ graph and its inversion

The image of the graph

B(x, y) := 2 +
xy√

1 + x2
√

1 + y2

has no umbilics, so its inversion

f := F/|F |2, F := (x, y, B(x, y))

is a closed regular surface, which is differentiable but not C1-regular
at (0, 0, 0). This implies that (0, 0, 0) is a differentiable umbilic of
index 2. (cf. Bachelor’s thesis of Fujiyama)．

(Advantages of the inversion)：
(1) A conformal transformation preserves the umbilic flow.
(2) It maps to spheres to spheres.
(3) It is useful to construct non-analytic smooth surfaces.
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The regularity of surfaces after inversion�
Let U be a domain containing (0, 0), and

f : R2 \ U → R \ {0}
a smooth function.

Theorem 1 (Fujiyama-Ando-U). If f/r is bounded, and

(1)

∣∣∣∣f
2 − 2rffr

r2

∣∣∣∣ < 1,

then the inversion of the image of f can be expressed as a
continuous graph Z = Zf(X, Y ) near the origin (0, 0, 0), where

r :=
√
x2 + y2.

Moreover, under the assumtion (1), Z = Zf(X,Y ) is differen-
tiable at the origin if and only if

(2) lim
r→∞

f

r
= 0.

The Bates’ function is bounded and satisfies (1) and (2). So the
inversion of the Bates’ function induces a differentiable umbilic.
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The regularity of surfaces after inversion II
About C1-regularity, we have the following:

Proposition 2. If the function f is bounded, and

(a) lim
r→∞ fr = 0, (b) lim

r→∞
fθ
r
= 0,

then the inversion of f can be expressed as a graph z = Zf(X,Y )
which has C1-regularity at the origin (0, 0, 0) = (0, 0, Zf(0, 0)).

The Bates’ function does not satisfy (b). In fact, the unit normal
vector field

νB :=
(−Bx,−By, 1)√
1 +B2

x +B2
y

satisfies

lim
x→∞

νB(x, 0) = (0,− 1√
2
,
1√
2
),

lim
y→∞

νB(0, y) = (− 1√
2
, 0,

1√
2
).
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Identifiers of umbilics
For a given function

f : (U, x, y) → R,

we define the following vector field on U by

Df := d1
∂

∂x
+ d2

∂

∂y
,

d1 := (1 + f 2
x)fxy − fxfyfxx,

d2 := (1 + f 2
x)fyy − fxx(1 + f 2

y ).

Theorem 3. The vector field Df on U has the following prop-
erties:

(1) Df(x0, y0) = 0 if and only if P := (x0, y0) ∈ U is an um-
bilic. (cf. Ghomi-Howard 2012)．

(2)Moreover, the number

IndP (Df)/2

is equal to the index of curvature line flow at P .

Using Df , we can easily find four umbilics on an ellipsoid. The
function d1 for Bates’ function is computed by

d1 =
x6

(
y2 + 1

)
+ 3x4

(
y2 + 1

)
+ x2

(
6y2 + 3

)
+ 2y2 + 1

(x2 + 1)9/2 (y2 + 1)5/2
.

This implies that B has no umbilics.
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Polar identifier for umbilics
Let f : (U, 0) → R be a smooth function.
We set

x = r cos θ, y = r sin θ,

and define a new vector field by

Δf := δ1
∂

∂x
+ δ2

∂

∂y
,

δ1 := −fθ
(
1 + f 2

r + rfrfrr
)
+ r

(
1 + f 2

r

)
frθ,

δ2 :=
(
1 + f 2

r

)
(rfr + fθθ)− frr

(
r2 + f 2

θ

)
.

Theorem 4 (Ando-Fujiyama-U).
The vector field Δf satisfies the following properties:

(1) Δf(P ) = 0 if and only if P ∈ U is an umbilic.
(2) If P = (0, 0), then the number

1 +
IndP (Δf)

2
gives the index of curvature line flow of the graph of f .

Example１. The function

f = x3 − 3xy2 = r3 cos θ(−1 + 2 cos 2θ)

has an index −1/2 at (0, 0), which follows from

Δf =

(
−6r3sin 3θ,−6r3

(
9r4 + 2

)
cos 3θ

)
.

Example ２. The function

f = x3 + xy2 = r3 cos θ

has an index 1/2 at (0, 0), which follows from

Δf =

(
−2r3sin θ,−2r3cos θ

(
2− 3r4 − 6r4 cos 2θ

))
.
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The main theorem
We set

U1 := {(x, y) ∈ R2 ; x2 + y2 < 1}.
Theorem (Ando-Fujiyama-U.) For each positive integer, there

exists a C1-differentiable immersion

ϕ : U1 → R3

satisfying the following properties:

(1) ϕ is real analytic on U ∗
1 := U1 \ {(0, 0)}.

(2) The index of curvature line flow of ϕ(x, y) at (0, 0) is equal to

1 +
m

2
.

In fact, we consider the function

(f =)fm(r, θ) := 1 + tanh(ra cosmθ),

(0 < a < 1, m = 1, 2, 3, · · · ).
Then the inversion of it satisfies the above conditions (1) and (2).

図 10. The image of f for m = 5 and a = 1/5.
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The proof of the theorem
（The surface obtained by the inversion of f5）

図 11. The inversion of f for m = 5 and a = 1/5.

We set

f = 1 + F (ra cosmθ), F (x) := tanh(x).

Then

(1) F (−x) = −F (x),
(2) F ′(x) > 0 for x ∈ R，
(3) F ′′(x) < 0 for x > 0，
(4) F (x) ∼ 1− e−2x for x >> 0．

δ1 = −mrasm

(
aracmF

′′ (racm) + (a− 1)F ′ (racm)
)

and

r2−3aδ2 = −r2−a
(
a2c2m −m2s2m

)
F ′′ (cmra)

+ acm
(
a2c2m − am2 +m2s2m

)
F ′ (cmra)

3

− cmr
2−2a

(
a2 − 2a +m2

)
F ′ (cmra) ,

where cm = cosmθ, sm = sinmθ.

Ind∞(Δf) = −m,

If(∞) = 1− m

2
,

The index after inversion = 2− If(∞) = 1 +
m

2
.
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An alternative proof without inversion

We set
λ := r2 tanh(r−a cos θ) (0 < a < 1),

where
x = r cos θ, y = r sin θ.

The the index of Hλ is equal to

1 +
m

2
.

We set

ν :=
1

1 + λ2
x + λ2

y

(
2λx, 2λy, λ

2
x + λ2

y − 1

)
.

Then it is a unit normal vector of the surface

P = (x, y, λ)− λν,

which is C1-differentiable at (0, 0) and its curvature line flow has
the index

1 +
m

2
.

In fact, λ is related to fm by

λ̂ := (x2 + y2)−1λ

(
x

x2 + y2
,

y

x2 + y2

)

(= tanh(ra cos(mθ))) = fm,

and the formula

ind0(H(μ)) + ind∞(H(μ̂)) = 2

holds for an arbitrary given C∞-function μ : R2 \ {(0, 0)} → R.
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