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20. A complex equifocal submanifold



A complex equifocal submanifold

A complex equifocal submanifold

G/K : a symmetric space of non-compact type

f : M ↪→ G/K : an embedding

v : a normal vector of f

Av : the shape operator of f

R : the curvature tensor of G/K R(v) := R(·, v)v

γv : the normal geodesic of M with γ′
v(0) = v



A complex equifocal submanifold

A complex equifocal submanifold

YX : (str.) M -Jacobi fd along γv s.t. Y (0) = X (∈ TxM)

YX is described as

YX(s) = Pγv|[0,s](Qv(s)X) Pγv|[0,s] : the parallel translation along γv|[0,s]
Qv(s) := cos(s

√
R(v)) − sin(s

√
R(v))√

R(v)
◦Av





A complex equifocal submanifold

A complex equifocal submanifold

.
Definition
..

......

s0 (∈ R) : a focal radius of M along γv
⇐⇒
def

γv(s0) : a focal point of M along γv

.
Fact
..

......

Assume that M has flat section. Then

s0 (∈ R) : a focal radius of M along γv
⇐⇒ KerQv(s0) 6= {0}



A complex equifocal submanifold

A complex equifocal submanifold

Assume that M has flat section.

QC
v(z) := cos(z

√
R(v)C) −

sin(z
√
R(v)C)√

R(v)C
◦AC

v (z ∈ C)

.
Definition(K. (Kyushu J.M.-2004))
..

......

z0 (∈ C) : a complex focal radius of M along γv
⇐⇒
def

KerQC
v(z0) 6= {0}



A complex equifocal submanifold

A complex equifocal submanifold

Assume that f : M ↪→ G/K is real analytic.

fC : MC ↪→ GC/KC : the complexification of f

.
Fact(K. (Tokyo J.M.-2005))
..

......

z0 (∈ C) : a complex focal radius of M along γv
⇐⇒ γC

v (z0) : a focal point of MC along s 7→ γC
v (sz0)



A complex equifocal submanifold

A complex equifocal submanifold

G/K

γvM

v

Jv

MC

γC
v

x

γs0v+t0Jv(1)

γs0v+t0Jv

J : the complex structure of GC/KC

γC
v ≈ R2 or R × S1

z0 = s0 + t0i : a complex focal radius along γv



A complex equifocal submanifold

A complex equifocal submanifold

G/K

γv

γC
v

γs0v+t0Jv(1)

MC M

γs0v+t0Jv



A complex equifocal submanifold

A complex equifocal submanifold

.
Definition(K. (Kyushu J.M.-2004))
..

......

M : a complex equifocal submanifold

⇐⇒
def


• the normal holonomy group of M is trivial

• M has flat section

• for any parallel normal vector field v,

the complex focal radii along γvx is indep. of x



21. A non-Euclidean type focal point
on the ideal boundary



A non-Euclidean type focal point on the ideal boundary

A non-Euclidean type focal point on the ideal boundary

v : a unit normal vector of M at x

γv(∞) : the asymptotic class of the geodesic

γv : [0,∞) → M s.t. γ′
v(0) = v

G/K(∞) : the ideal boundary of G/K

(i.e., the set of all asymptotic classes of

geodesics γ : [0,∞) → G/K’s)



A non-Euclidean type focal point on the ideal boundary

A non-Euclidean type focal point on the ideal boundary

.
Definition(K. (Kyungpook M.J.-2010))
..

......

If there exists a M -Jacobi field Y along γ s.t.

lim
s→∞

||Y (s)||
s

= 0,

then we call γv(∞) a focal point of M on the ideal

boundary G/K(∞).

In particular, if there exists a M -Jacobi fd Y along γ

s.t. lim
s→∞

||Y (s)||
s

= 0 and Sec(v, Y (0)) 6= 0,

then we call γv(∞) a non-Euclidean type focal point

of M on the ideal boundary G/K(∞).



A non-Euclidean type focal point on the ideal boundary

A non-Euclidean type focal point on the ideal boundary

Hm(c)

(Hm(c))(∞)

Sm−1(c̄)

γv

M = Sm−1(c̄) ⊂ Hm(c)

a M -Jacobi field

There exists no focal point on the ideal boundary



A non-Euclidean type focal point on the ideal boundary

A non-Euclidean type focal point on the ideal boundary

Hm(c)

(Hm(c))(∞)

Rm−1

γv
γv(∞)

There exists a focal point on the ideal boundary

M = Rm−1 ⊂ Hm(c)



A non-Euclidean type focal point on the ideal boundary

A non-Euclidean type focal point on the ideal boundary

Hm(c)

(Hm(c))(∞)

Hm−1(c̄)

γv

v

M = Hm−1(c̄) ⊂ Hm(c)

a M -Jacobi field

There exists no focal point on the ideal boundary



22. The mean curvature flow for a certain kind
of complex equifocal submanifold



The mean curvature flow for a certain kind of complex equifocal submanifold

The mean curvature flow for a certain kind of

complex equifocal submanifold

G/K : a symmetric space of non-compact type

M : a curvature-adapted complex equifocal submanifold

in G/K admitting no non-Euclidean focal point on

the ideal boundary

Assume that M admits focal submanifolds.

Fl : one of the lowest dimensional focal submanifolds of M

.
Fact.
..
...... Fl is a reflective submanifold.



The mean curvature flow for a certain kind of complex equifocal submanifold

The mean curvature flow for a certain kind of

complex equifocal submanifold

Without loss of generelity, we may assume eK ∈ Fl .

p := TeK(G/K), p′ := T⊥
eKFl

b : a maximal abelian subspace of p′

a : a maximal abelian subspace of p containing b

p = a ⊕
(

⊕
α∈4+

pα

)
: the root space decomposition

w.r.t. a

4′ := {α|b |α ∈ 4 s.t. α|b 6= 0}



The mean curvature flow for a certain kind of complex equifocal submanifold

The mean curvature flow for a certain kind of

complex equifocal submanifold

Mt : the mean curvature flow for M
.
Theorem 22.1(K. (Kodai M.J.-to appear))
..

......

Assume that

codimM = rank(G/K) and dim(pα ∩ p′) ≥ 1
2
dim pα.

Then the following statements (i) and (ii) hold:

(i) M is not minimal and Mt collapses to a focal submfd

F of M in finite time.

(ii) If the natural fibration of M onto F is spherical,

then Mt is of type I singularity.



The mean curvature flow for a certain kind of complex equifocal submanifold

The mean curvature flow for a certain kind of

complex equifocal submanifold

Example.

G/K : a symmetric space of non-compact type

θ : involution of G s.t. (Fix θ)0 ⊂ K ⊂ Fix θ

H : a symmetric subgroup of G

(i.e., ∃σ : inv. of G s.t. (Fixσ)0 ⊂ H ⊂ Fixσ)

H y G/K is called a Hermann type action.



The mean curvature flow for a certain kind of complex equifocal submanifold

The mean curvature flow for a certain kind of

complex equifocal submanifold

.
Fact.
..

......

Principal orbits of a Hermann type action are

curvature-adapted complex equifocal submanifold

admitting no non-Euclidean type focal point on

the ideal boundary.

We can find many examlpes of a submanifold satisfying

all the conditions in Theorem 22.1 among principal orbits

of Hermann type actions.



The mean curvature flow for a certain kind of complex equifocal submanifold

The mean curvature flow for a certain kind of

complex equifocal submanifold

.
Theorem 22.2(K. (Kodai M.J.-to appear)).
..

......

Under the hypothesis of Theorem 22.1, assume that

Fl is a one-point set.

F : a focal submfd of M which is not a one-point set

Ft : the mean curvature flow for F

Then

(i) F is not minimal and Ft collapses to a focal submfd F ′

of M in finite time.

(ii) If the natural fibration of F onto F ′ is spherical,

then Ft is of type I singularity.



The mean curvature flow for a certain kind of complex equifocal submanifold

The mean curvature flow for a certain kind of

complex equifocal submanifold

Mt −→
(t→T1)

F 1

non−min.

F 1
t −→

(t→T2)
F 2

non−min.

. . .

F k−1
t −→

(t→Tk)
{pt.}(

F 1 : a focal submanifold of M

F i : a focal submanifold of F i−1 (i = 2, · · · , k − 1)

)



The mean curvature flow for a certain kind of complex equifocal submanifold

M̃ := (π ◦ φ)−1(M) ↪→ H0([0, 1], g)

↓ φ

G

↓ π

M ↪→ G/K

M : a curvature-adpated complex equifocal submanifold

admitting no non-Euclidean type focal point

on the ideal boundary

=⇒ M̃ : reg. proper complex isoparametric submanifold



The mean curvature flow for a certain kind of complex equifocal submanifold

The mean curvature flow for a certain kind of

complex equifocal submanifold

M̃ ↪→ H0([0, 1], g) M̃C ↪→ H0([0, 1], gC)

↓ φ ↓ φC

G GC

↓ π ↓ πC

M ↪→ G/K · · · · · · · · · · · · → MC ↪→ GC/KC



23. Proper complex isoparametric
submanifolds in a pseudo-Hilbert space



Proper complex isoparametric submanifolds in a pseudo-Hilbert space

Proper complex isoparametric submanifolds

in a pseudo-Hilbert space

V : an ∞-dimensional pseudo-Hilbert space

f : M ↪→ V : a Fredholm submanifold i.e., codimM < ∞, f is a proper map

and the shape operators are cpt op.

for certain kind of inner product





Proper complex isoparametric submanifolds in a pseudo-Hilbert space

Proper complex isoparametric submanifolds

in a pseudo-Hilbert space

.
Definition.
..

......

M : a complex isoparametric submanifold

⇐⇒
def


• the normal holonomy group of M is trivial

• for any parallel normal vec. fd. v of M ,

the complex principal curvatures for vx
are independent of x ∈ M .



Proper complex isoparametric submanifolds in a pseudo-Hilbert space

Proper complex isoparametric submanifolds

in a pseudo-Hilbert space

.
Definition
..

......

M : a proper complex isoparametric submanifold

⇐⇒
def


• M is complex isoparametric

• for any normal vector v of M ,

AC
v is diagonalized with respect to

a pseudo-orthonormal base



Proper complex isoparametric submanifolds in a pseudo-Hilbert space

Proper complex isoparametric submanifolds

in a pseudo-Hilbert space

f : M ↪→ V : a proper complex isoparametric submfd

x0 ∈ M

The focal set of M at x0 consists of finite pieces of

hyperplanes ({la | a = 1, · · · , k}) in T⊥
x0
M .

The reflections w.r.t. la’s generate a discrete group,

that is, a Coxeter group. This group is called

the real Coxeter group of M .



Proper complex isoparametric submanifolds in a pseudo-Hilbert space

Proper complex isoparametric submanifolds

in a pseudo-Hilbert space

.
Definition
..

......

M : Fredholm submfd with proper shape operators

⇐⇒
def


• M is a Fredholm submanifold

• for any normal vector v of M ,

AC
v is diagonalized with respect to

a pseudo-orthonormal base



Proper complex isoparametric submanifolds in a pseudo-Hilbert space

M : a Fredholm submfd with proper shape operators
.
Definition.
..

......

M : regularizable

⇐⇒
def



∀ v ∈ T⊥M,

∃TrrA
C
v (< ∞), ∃Tr(AC

v)
2 (< ∞)

TrrA
C
v :=

∑
i

miµi

SpecAC
v = {µi | i = 1, 2, · · · }

|µi| > |µi+1| or

“|µi| = |µi+1| & Reµi > Reµi+1”

or “|µi| = |µi+1| & Reµi = Reµi+1

& Imµi = −Imµi+1 > 0”


mi : the multiplicity of µi







Proper complex isoparametric submanifolds in a pseudo-Hilbert space

Proper complex isoparametric submanifolds

in a pseudo-Hilbert space

M : a regularizable submanifold with proper shape

perators

.
Fact
..

...... TrAC
v , Tr (AC

v)
2 ∈ R

.
Definition.
..

......

H ∈ Γ(T⊥M) ⇐⇒
def

〈H, v〉 = TrrA
C
v (∀ v ∈ T⊥M)

This is called the regularized mean curvature vector of M .



Proper complex isoparametric submanifolds in a pseudo-Hilbert space

Proper complex isoparametric submanifolds

in a pseudo-Hilbert space

V : an ∞-dimensional pseudo-Hilbert space

f : M ↪→ V : regularizable submanifold with

proper shape op.

ft : M ↪→ V (0 ≤ t < T ) : C∞-family of regularizable

submfds with proper shape op.

f̃ : M × [0, T ) → V

⇐⇒
def

f̃(x, t) := ft(x) ((x, t) ∈ M × [0, T ))



Proper complex isoparametric submanifolds in a pseudo-Hilbert space

Proper complex isoparametric submanifolds

in a pseudo-Hilbert space

.
Definition
..

......

ft (0 ≤ t < T ) : a mean curvature flow

⇐⇒
def

∂f̃

∂t
= Ht (0 ≤ t < T )

(Ht : the regularized mean curv. vec. of ft)

.
Question.
..

......

For any regularizable submanifold f : M ↪→ V with

proper shape op., does the mean curvature flow

for f uniquely exist in short time?



Proper complex isoparametric submanifolds in a pseudo-Hilbert space

Proper complex isoparametric submanifolds

in a pseudo-Hilbert space

G/K : a symmtric space of non-compact type

M : a curvature-adapted complex equifocal submanifold

in G/K admitting no non-Euclidean type focal point

on the ideal boundary

M̃ := (π ◦ φ)−1(M) (↪→ H0([0, 1], g))

.
Fact.
..

......

• M̃ is a reg. proper complex isoparametric submanifold.

• There uniquely exists the mean curvature flow for M̃

in short time.



24. The outline of the proof
of Theorems 22.1 and 22.2



The outline of the proof of Theorems 22.1 and 22.2

The outline of the proof of Theorems 22.1 and 22.2

M : a curvature-adapted complex equifocal submanifold

in G/K admitting no non-Euclidean type focal point

on the ideal boundary

Assume that M admits focal submanifolds.

Fl , 4, pα, p′ : as in Section 22

Mt : the mean curvature flow for M



The outline of the proof of Theorems 22.1 and 22.2

The outline of the proof of Theorems 22.1 and 22.2

.
Theorem 22.1.
..

......

Assume that codimM = rank(G/K) and that

dim(pα ∩ p′) ≥ 1
2
dim pα. Then

(i) M is not minimal and Mt collapses to a focal submfd

F of M in finite time.

(ii) If the natural fibration of M onto F is spherical,

then Mt has type I singularity.



The outline of the proof of Theorems 22.1 and 22.2

The outline of the proof of Theorems 22.1 and 22.2

M : a curvature-adapted proper complex equifocal

submanifold as in Theorem 22.1

Mt : the mean curvature flow for M

M̃ := (π ◦ φ)−1(M).



The outline of the proof of Theorems 22.1 and 22.2

The outline of the proof of Theorems 22.1 and 22.2

.
Lemma 24.1.
..

......

M̃t := (π ◦ φ)−1(Mt) is the mean curvature flow

for M̃ .

The investigation of the flow Mt is reduced to that of the

flow M̃t.



The outline of the proof of Theorems 22.1 and 22.2

The outline of the proof of Theorems 22.1 and 22.2

x0 ∈ M

u0 ∈ (π ◦ φ)−1(x0) (⊂ M̃)

C̃ (⊂ T⊥
u0
M̃) : the fund. domain of the real Coxeter gr.

of M̃ containing u0

.
Definition
..

......

X : a tangent vector field on C̃

⇐⇒
def


Xw := (H̃w)u0+w (w ∈ C̃) H̃w : the reg. mean curv. vec. of ηw̃(M̃)(

ηw̃ : the end − point map for

a p. n. v. f . w̃ s.t. w̃u0 = w

) 



The outline of the proof of Theorems 22.1 and 22.2

The outline of the proof of Theorems 22.1 and 22.2

{ψt} : a local one-parameter transformation gr. of X

ξ(t) := ψt(0) (0 : the zero vector of T⊥
u0
M̃)

ξ̃(t) : the parallel n.v.f. of M̃ s.t. ξ̃(t)u0
= ξ(t)

.
Lemma 24.2.
..

......
M̃t = η

ξ̃(t)
(M̃)

Proof of (i) of Theorem 22.1.

Mt = (π ◦ φ)(M̃t) = (π ◦ φ)(η
ξ̃(t)

(M̃))

= η
(π◦φ)∗(ξ̃(t))

(M)

q.e.d.



The outline of the proof of Theorems 22.1 and 22.2

The outline of the proof of Theorems 22.1 and 22.2

X − −− > ξ
Lem24.2
− − − > M̃t

Lem24.1
− − − > Mt

M : a curv.-adapted complex equifocal submfd

admitting no non-Euclidean type focal point

on the ideal boundary

−− > M̃ : a reg. proper complex isoparametric submfd



The outline of the proof of Theorems 22.1 and 22.2

The outline of the proof of Theorems 22.1 and 22.2

Ã : the shape tensor of M̃

(TuM̃)C = ⊕
i∈Iu

Eu
i (common eigensp. decomp. of ÃC

v ’s

(v ∈ (T⊥
u M̃)C))

λu
i : (T⊥

u M̃)C → C ⇐⇒
def

ÃC
v |Eu

i
= λu

i (v)id (v ∈ T⊥
u M̃)

.
Fact.
..

...... λu
i ∈ ((T⊥

u M̃)C)∗



The outline of the proof of Theorems 22.1 and 22.2

The outline of the proof of Theorems 22.1 and 22.2

By ordering Eu
i ’s (u ∈ M̃) suitably, we may assume that

∀ i ∈ I(:= Iu),

Ei : u 7→ Eu
i (u ∈ M̃) : C∞-distribution

complex curvature distribution

λi ∈ Γ(((T⊥M̃)C)∗) ⇐⇒
def

(λi)u := λu
i (u ∈ M̃)

complex principal curvature

ni ∈ Γ((T⊥M̃)C) ⇐⇒
def

λi = 〈ni, ·〉 (i ∈ I)

complex curvature normal



The outline of the proof of Theorems 22.1 and 22.2

The outline of the proof of Theorems 22.1 and 22.2

Λ : the set of all complex principal curvatures of M̃

.
Fact
..

......
∪

λ∈Λ
λ−1
u (1) = ”the focal set of M̃C at u”

.
Fact
..

......

The focal set of M̃C at u consists of finite pieces of

infinite families of parallel complex hyperplanes

in T⊥
u (M̃C).



The outline of the proof of Theorems 22.1 and 22.2

The outline of the proof of Theorems 22.1 and 22.2

From these facts, we have

.
Fact
..

......

Λ =
r̄
∪

a=1

{
λa

1 + baj

∣∣∣∣ j ∈ Z
}

(
λa ∈ Γ(((T⊥M̃)C)∗), ba ∈ C s.t. |ba| > 1

)



The outline of the proof of Theorems 22.1 and 22.2

The outline of the proof of Theorems 22.1 and 22.2

4′V
+ := {β ∈ 4′

+ | pβ ∩ p′ 6= {0}}

4′H
+ := {β ∈ 4′

+ | pβ ∩ p′⊥ 6= {0}}

Let 4′
+ = {βi | i ∈ I}, 4′V

+ = {βi | i ∈ I+},

and 4′H
+ = {βi | i ∈ I−}.



The outline of the proof of Theorems 22.1 and 22.2

The outline of the proof of Theorems 22.1 and 22.2

From codimM = rank(G/K) & dim(pα ∩ p′) ≥ 1
2
dim pα,

we have I− ⊂ I+ = I and the following fact:

.
Fact
..

......

Λ =

 β̃C
i

bi + jπ
√
−1

∣∣∣∣∣∣ i ∈ I+ = I, j ∈ Z


∪

 β̃C
i

bi + (j + 1
2
)π

√
−1

∣∣∣∣∣∣ i ∈ I−, j ∈ Z

 β̃C
i : the parallel section of ((T⊥M̃)C)∗

s.t. (β̃C
i )u0 = βC

i

bi ∈ R





The outline of the proof of Theorems 22.1 and 22.2

The outline of the proof of Theorems 22.1 and 22.2

.
Fact
..

...... C̃ = {w ∈ T⊥
u0
M̃ |βi(w) < bi (i ∈ I+ = I)}



The outline of the proof of Theorems 22.1 and 22.2

The outline of the proof of Theorems 22.1 and 22.2

For simplicity, we set

λ̃+
ij :=

β̃C
i

bi+jπ
√

−1
(i ∈ I+ = I, j ∈ Z)

λ̃−
ij :=

β̃C
i

bi+(j+1
2
)π

√
−1

(i ∈ I−, j ∈ Z)

E+
ij : the complex curv. distribution corr. to λ̃+

ij

E−
ij : the complex curv. distribution corr. to λ̃−

ij

m+
i := dimE+

ij , m−
i := dimE−

ij



The outline of the proof of Theorems 22.1 and 22.2

The outline of the proof of Theorems 22.1 and 22.2

.
Lemma 24.3.
..

......

Xw =
∑
i∈I+

m+
i coth(bi − βi(w))β]

i

+
∑
i∈I−

m−
i tanh(bi − βi(w))β]

i

(
β]
i ⇐⇒

def
〈β]

i , ·〉 = βi(·)
)



The outline of the proof of Theorems 22.1 and 22.2

The outline of the proof of Theorems 22.1 and 22.2

Proof of (ii) of Theorem 22.1

ρ ∈ C∞(C̃)

⇐⇒
def

ρ(w) := −
∑
i∈I+

m+
i log sinh(bi − βi(w))

−
∑
i∈I−

m−
i log cosh(bi − βi(w)) (w ∈ C̃)

Then we have

grad ρ = X, and ρ : downward convex

Also we have

ρ(w) → ∞ (w → ∂C̃)



The outline of the proof of Theorems 22.1 and 22.2

The outline of the proof of Theorems 22.1 and 22.2

R

the graph of ρ

X

C̃ C̃



The outline of the proof of Theorems 22.1 and 22.2

The outline of the proof of Theorems 22.1 and 22.2

Hence we see that

ρ has no minimal point.

On the other hand, we can show the following fact:

∃Φ : a polynomial map of T⊥
u0
M̃ onto Rr (r := codimM)

s.t.

{
Φ|

C̃
(: C̃ → Rr) : into homeomorphism

Φ∗X : a polynomial vec. fd.

From these facts, we see that

the integral curve ξ(t) of X starting at 0

converges to a pt. w1 of ∂C̃ in finite time.



The outline of the proof of Theorems 22.1 and 22.2

The outline of the proof of Theorems 22.1 and 22.2

Since M̃ is not minimal,

0 6= w1 and the flow ξ(t) of X starting 0

converges to a point w1 of ∂C̃ in finite time T .

Since Mt = η
(π◦φ)∗(ξ̃(t))

(M),

Mt collapses to the focal submanifold η(π◦φ)∗(w̃1)(M)

in the time T . q.e.d.



The outline of the proof of Theorems 22.1 and 22.2

The outline of the proof of Theorems 22.1 and 22.2

.
Theorem 22.2.
..

......

Under the hypothesis of Theorem 22.1, assume that

Fl is a one-point set.

F : a focal submfd of M which is not a one-point set

Ft : the mean curvature flow for F

Then

(i) F is not minimal and Ft collapses to a focal submfd F ′

of M in finite time.

(ii) If the natural fibration of F onto F ′ is spherical,

then Ft is of type I singularity.



The outline of the proof of Theorems 22.1 and 22.2

The outline of the proof of Theorems 22.1 and 22.2

σ : the stratum of ∂C passing F

Ft : the mean curv. flow for F

σ̃ : the simplex of ∂C̃ s.t. exp⊥(σ̃) = σ

w0 : a point of (σ̃)◦

s.t.

{
exp⊥(w0) is the only intersection point

of F and σ
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F̃w : the focal submanifold of M̃ thr. w ∈ (σ̃)◦

(i.e., F̃w := ηw̃(M̃))

H̃w : the reg. mean curvature vector of F̃w

.
Fact.
..

...... (H̃w)u0+w : tangent to (σ̃)◦

.
Definition
..

......

Xσ̃ : a tang. vec. fd. on (σ̃)◦

⇐⇒
def

Xσ̃
w := (H̃w)u0+w (w ∈ (σ̃)◦)
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Iw0
+ := {i ∈ I+(= I) |βi(w0) = bi}

Since F in not the lowest-dim. focal submfd of M , we have

I+ \ Iw0
+ 6= ∅

Since Fl is a one-point set, we have

I− = ∅
.
Lemma 24.4.
..

......

Xσ̃
w =

∑
i∈I+\Iw0

+

m+
i coth(bi − βi(w))β]

i (w ∈ (σ̃)◦)

(
β]
i ⇐⇒

def
〈β]

i , ·〉 = βi(·)
)
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Proof of (i) of Theorem 22.2

ρσ̃ ∈ C∞(σ̃)

⇐⇒
def

ρσ̃(w) := −
∑

i∈I+\Iw0
+

m+
i log sinh(bi − βi(w))

(w ∈ (σ̃)◦)

Then we see that

grad ρσ̃ = X and ρ is downward convex.

Also we see that

ρσ̃(w) → ∞ (w → ∂σ̃)

ρσ̃(tw) → −∞ (t → ∞) for each w ∈ (σ̃)◦



The outline of the proof of Theorems 22.1 and 22.2

The outline of the proof of Theorems 22.1 and 22.2

Hence we see that

ρσ̃ has no minimal point.

Furthermore, we can show that

the integral curve ξ(t) of Xσ̃ starting at w0

converges to a pt. w1 of ∂σ̃ in finite time T .

Since Ft = η
(π◦φ)∗(ξ̃(t))

(M),

Ft collapses to the lower dim. focal submanifold

η(π◦φ)∗(w̃1)(M) in the time T .

q.e.d.


