
Tokunaga et al. Vol. 12, No. 5 /May 1995/J. Opt. Soc. Am. B 753
Femtosecond phase spectroscopy by
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We present the principles, experimental procedures, applications, and theoretical analyses of femtosec-
ond phase spectroscopy, which is complementary to femtosecond absorption spectroscopy. In femtosecond
phase spectroscopy difference spectra of both phase and transmission are simultaneously measured with a
frequency-domain interferometer, which is only slightly modified from the conventional pump–probe method.
Femtosecond time-resolved dispersion relations for CdSxSe12x-doped glass and CS2 are obtained with
transform-limited pulses of 60-fs duration and 620-nm center wavelength. The results are theoretically an-
alyzed and are well reproduced by numerical simulations. Although time-resolved data are not expected
to satisfy the Kramers–Kronig (K–K) relations, the degree of discrepancy from the K–K relations is more
substantial for CS2 than for CdSxSe12x-doped glass. These results arise from the difference in the linear
susceptibility and in the excited-population dynamics. The conditions for which the K–K relations are ap-
plicable to time-resolved spectra are obtained theoretically and verified experimentally. It is shown that
induced amplitude and phase modulations of the probe pulses cause a deviation from the K–K relations.
1. INTRODUCTION

Time-resolved spectroscopy is one of the new fields in
optical spectroscopy that developed along with the ad-
vent of the coherent optical pulse source, i.e., the mode-
locked pulse laser. Recent advances in short-pulse lasers
of high repetition rate and stable operation are remark-
able, as represented by the Ti:sapphire laser, so that time-
resolved spectroscopy even in the femtosecond regime is
more and more popular and is increasing in importance.
In particular, to reveal details of ultrashort transient
phenomena in optically excited states, femtosecond ab-
sorption spectroscopy by a pump–probe method makes
powerful contributions because the spectral dependence
of transmission changes, the difference transmission spec-
trum (DTS), can be obtained with a single measurement
by use of a white-light continuum pulse and a multichan-
nel spectrometer without the scanning of a probe wave-
length. A DTS is usually obtained as the normalized
transmission change DTyT sv, td, where v is the angu-
lar frequency and t is the time delay between pump and
probe pulses.

Absorption spectroscopy offers information not about
the real part of the susceptibility change but only about
the imaginary part. One method for obtaining the real
part is the application of the Kramers–Kronig (K–K)
relations,1,2 which connect the real and the imaginary
parts of the linear susceptibility. Even for a nonlin-
ear change of the susceptibility, the extended relations
apply3–6 if the causality condition is satisfied for a re-
sponse function. Because the K–K relations are also for-
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mulated between absorption and reflection spectra, they
have frequently been applied to highly absorptive mate-
rials, through which no detectable light is transmitted,
to permit deduction of transient absorption spectra from
transient reflection spectra.7 However, some ambiguity
always remains in application of K–K relations because
of the limited spectral range, and an even more seri-
ous problem is that no general relations exist in time-
resolved spectroscopy because the causality condition is
not satisfied.8 Hence a direct measurement of the phase
change is necessary for assessment of the real part of the
susceptibility change in time-resolved spectroscopy.

To yield time-resolved phase information, an inter-
ferometric technique is combined with the pump–probe
method. For this purpose time-resolved interferome-
try has been a frequently applied methodology, and
there have been continuous efforts to develop a novel
time-resolved interferometer. Previously many meth-
ods were proposed for time-resolved measurement of
the phase change,9–15 but nothing had been compa-
rable with pump–probe spectroscopy, by which the phase
change should be both wavelength and time resolved to
give a difference phase spectrum (DPS) DFsv, td with a
single measurement as for a DTS. Simultaneous mea-
surement of the real and the imaginary parts of the optical
nonlinearity is also of much importance,16–18 but we are
aware of no measurement of both parts that was both
wavelength and time resolved. It has been questioned
how one could achieve such measurements.

Time-resolved interferometers that were developed
previously9–15 use spatial interference fringes, which ap-
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pear as a function of position, x, with a period of 2pyDk,
where Dk is the difference in wave number between two
light beams. For spatial interference to be observed,
temporal coincidence is required between reference and
probe pulses from the same light source within the co-
herence time. Since the coherence time is equal to the
pulse duration in the case of transform-limited pulses
from a mode-locked laser, the experimental alignment
becomes extremely difficult when ultrashort pulses are
used. In particular, for pulses with a large bandwidth
covering the whole visible region, i.e., for femtosecond
white-light continuum pulses, the coherence length is as
short as a few wavelengths of visible light, so that the
resultant spatial interference pattern consists of only a
few fringes. More precisely, each wavelength component
of white light makes fringes whose spacing varies with
wavelength, resulting in a zeroth-order white central peak
and first-order fringes with a continuously changing in-
terference color. This fringe structure is not appropriate
for fringe-shift detection.

The wavelength dependence of the phase change can be
determined even by spatial interference if a tunable laser
or spectral filtering of a continuum is employed. How-
ever, such a measurement requires not only a complicated
experimental setup but also a long measuring time in that
one wavelength after another is measured at each delay
position. Furthermore, it does not give a DPS that is
the exact counterpart of the DTS obtained with femtosec-
ond continuum pulses and a multichannel spectrometer,
because the time resolution is reduced by the narrowed
spectral width of the probe.

To overcome the difficulties mentioned above, in a
previous Letter19 we introduced a frequency-domain in-
terferometer (FDI) for femtosecond phase spectroscopy.
In contrast to the previous interferometers, the FDI gives
a DPS that is the counterpart of the DTS without the
need for a complicated experimental arrangement. Fur-
thermore, the FDI realizes a simultaneous measurement
of DPS and DTS with a femtosecond time resolution.
All these outstanding performances are achieved by use
of frequency-domain interference instead of spatial in-
terference. By analogy with beating, which is time-
domain interference between two frequency components,
frequency-domain interference is produced by two time
components, i.e., reference and probe pulses, and appears
as a function of angular frequency, v, with a period of
2pyDt, where Dt is the time separation between the
two pulses. In marked contrast to spatial interference,
therefore, frequency-domain interference can take place
even when the two pulses are spaced by more than the
pulse duration, so that the pulse-overlap condition that is
necessary in space-domain interference is fully obviated.
For the sake of this advantage, for example, frequency-
domain interference was previously used for producing a
phase-locked pulse pair to excite vibronic transitions of
a molecule coherently.20

In previous short reports we proposed the FDI19 and
demonstrated the breakdown of the K–K relations in
time-resolved spectroscopy.8 In this paper the com-
plicated features of the DTS and the DPS obtained by
the FDI are theoretically analyzed, together with a full
description of the method. The experimental results
are compared with the K–K relations to give a practi-
cal guide for application of the K–K relations in time-
resolved spectroscopy.

This paper is organized as follows. In Section 2 the
principle of the method and the experimental procedure
are described. In Section 3 the experimental results and
their numerical analyses are presented. In Section 4 the
applicability of the K–K relations in time-resolved spec-
troscopy is discussed, and the experimental results are
compared with the K–K relations. In Section 5 the re-
sults of the paper are summarized.

2. EXPERIMENTAL METHODS

A. Experimental Setup
The laser source, which was described in detail else-
where,21 is a standard combination of a colliding-pulse
mode-locked ring dye laser and a six-pass amplifier
pumped by a copper-vapor laser, generating pulses of
620-nm wavelength, 60-fs duration, 2-mJ pulse energy,
and 10-kHz repetition rate.

The schematic of the FDI apparatus is shown in
Fig. 1(a).19 The pulse is divided into three parts, i.e.,
pump, probe, and reference pulses. The probe is delayed
from the pump by t with a variable delay line. At a
Michelson interferometer the reference and the probe are
displaced by T for frequency-domain interferometry by
adjustment of the arm length. To avoid the effect of
the pump on the reference, one sets the displacement T
in such a way that the reference arrives at the sample
earlier than both pump and probe. The three pulses are
focused into the sample, with the pump and the probe
beams making a small angle and the reference and the
probe beams being collinear. The spectrum of the trans-
mitted reference and probe pulses is detected through

Fig. 1. (a) Experimental setup of the FDI and the time sequence
of pump, probe, and reference pulses with separations t and
T. (b) Another possible setup of the FDI that is suited to
measurements at time delays longer than T.
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Fig. 2. Mechanism of frequency-domain interference by a grat-
ing. u1 is the first-order diffraction angle, d is the period of the
grating grooves, D0 is the transverse dimension of the pulses, and
D is the transverse distance between the pair of components that
make the largest contribution to interpulse interference. See
text for details.

a spectrometer with a multichannel photodiode array.
With the pump beam blocked with a mechanical shut-
ter at ,5 Hz, the spectra with and without excitation are
taken alternately to yield the difference spectra as a func-
tion of time delay t with displacement T fixed throughout
the delay changes. With the reference beam blocked, the
ordinary pump–probe measurement can be performed to
yield the DTS.

B. Principle of the Method
How the above method gives the DPS is explained as
follows. The probe and the reference pulses temporally
displaced by T are expressed as22

Eprstd ­ Estdexpsiv0td ,

Eref std ­ Est 1 T dexpfiv0st 1 T dg , (1)

where v0 is a central angular frequency and Estd is gen-
erally a complex function. In the frequency domain the
two pulses are expressed by the Fourier transform (FT) as

F fEpr std 1 Eref stdg ­ Esv 2 v0df1 1 expsivT dg , (2)

where Esvd ; F fEstdg. Experimentally obtained is the
power spectrum:

jF fEpr std 1 Eref stdgj2 ­ jEsv 2 v0dj2s2 1 2 cos vT d , (3)

which represents the frequency-domain interference with
the fringe separation of 2pyT .

The optical field of a probe pulse transmitted through
a medium in the plane-wave approximation is given by

Epr
0std ­

1
2p

Z
dvEsv 2 v0dexphivft 2 ncsvdLycgj , (4)

where L is the thickness of the medium, c is the velocity of
light in vacuum, and ncsvd is the complex refractive index
of the medium defined by ncsvd ; nsvd 2 iksvd. The FT
of Eq. (4) is obtained as follows:

Epr
0svd ; F fEpr

0stdg ­ Esv 2 v0dexpf2incsvdvLycg . (5)

Since the reference pulse is transmitted through the same
medium as the probe, the reference spectrum is given
by Eref
0svd ­ Esv 2 v0dexpfivT 2 incsvdvLycg. On ex-

citation of the medium by the pump, only the probe
pulse undergoes a change in the complex refractive index,
Dncsv, td ; Dnsv, td 2 iDksv, td, such that

Epr
0sv, td ; F fEpr

0st, tdg

­ Epr
0svdexpfiDFsv, td 2 DKsv, tdg , (6)

where DF ; 2DnvLyc and DK ; DkvLyc. Without the
reference pulse the method is reduced to the conventional
pump–probe measurement. The DTS23 is obtained as

DTyT sv, td ­
jEpr

0sv, tdj2 2 jEpr
0svdj2

jEpr
0svdj2

­ expf22DKsv, tdg 2 1 . (7)

When the change is small, this becomes

DTyT sv, td , 22DKsv, td ­ 2Dasv, tdL , (8)

where Da is the change in the absorption coefficient a.
In this measurement only the imaginary part of Dnc is
obtained. With the reference pulse, on the other hand,
the interference signal without excitation is expressed by

jEpr
0svd 1 Eref

0svdj2 ­ jEpr
0svdj2s2 1 2 cos vT d , (9)

and the interference signal with excitation by

jEpr
0sv, td 1 Eref

0svdj2 ­ jEpr
0svdj2h1 1 expf22DKsv, tdg

1 2 expf2DKsv, tdg

3 cosfvT 2 DFsv, tdgj . (10)

Comparing Eq. (10) with Eq. (9), we see that DFsv, td
and DKsv, td can be simultaneously determined from the
peak shifts and the amplitude changes of the fringes,
respectively, with a multichannel spectrometer.

C. Physical Mechanism of Frequency-
Domain Interference
Experimentally time-dependent signals are Fourier trans-
formed by a grating in a spectrometer. In this process
temporally separated pulses can interfere with each other
because the linear dispersion of a grating broadens the
pulse widths24 to make them overlap temporally, as illus-
trated in Fig. 2. When light is normally incident upon
a grating, it is diffracted at an angle u such that optical
path differences between different transverse components
of light are introduced. All the diffracted components in-
terfere constructively at the angle u ­ ui, which satisfies

d sin ui ­ il , (11)

where i is an integer indicating the order of diffraction,
d is the period of the grating grooves, and l is the wave-
length of light. Monochromatic light produces d-function
diffraction peaks at u ­ u1, u2, . . ., because even a slight
departure from ui makes any diffracted component in-
terfere destructively with another component diffracted
from a distant groove that has a half-wavelength path
difference. A short light pulse, on the other hand, pro-
duces finite-width diffraction peaks at ui, i.e., a long pe-
riod of modulation as a function of u, because the destruc-
tive interference is incomplete owing to partial temporal
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Fig. 3. Frequency-domain interference between the probe and
the reference for several time displacements.

overlap between the finite-duration components. Now
we consider the first-order diffraction si ­ 1d. For the
pulse with a transverse dimension D0, the pulse duration
broadens to D0 sin u1yc from Eq. (11). Therefore the two
pulses separated by T can interfere if T % D0 sin u1yc.
For simplicity the case of cT ­ ml with m ­ 4 is illus-
trated in Fig. 2, but m does not need to be an integer.
For interpulse interference the interference between two
components that are transversely separated by D ­ md
(thick wavy curves in Fig. 2) gives the largest contribu-
tion because of the complete temporal overlap of the two
components. The condition for constructive interference
between the two components is

D sin uj ­ jl , (12)

where j is an integer. Since D .. d, a shorter period of
modulation as a function of u results from Eq. (12) than
from Eq. (11). This represents the frequency domain
interference.

Figure 3 shows frequency-domain interference obtained
for several values of the time displacement between the
reference and the probe, T. The visibility of the fringes
is reduced as T is increased because of the limited wave-
length resolution of the system that includes the finite
transverse size effect as shown in Fig. 2. The reference
and the probe spectra separately measured are shown at
the top of Fig. 3, where the intensity of the reference is
different from that of the probe as a result of the incom-
plete spatial overlap. Even with this incomplete align-
ment, interference was observable for more than T ­ 5 ps
(1.5 mm in length). Thus, by monitoring the fringe pe-
riod as a measure of the time displacement, one can
readily find the zero displacement position between the
reference and the probe pulses.
D. Advantages of the Frequency-Domain Interferometer
The setup in Fig. 1(a) employs the temporal division
scheme10,14 for separating the reference from the probe.
Since there is no need for overlapping the pulses tempo-
rally after a sample, the configuration is much simpler
than the time-division measurement by LaGasse et al.14

By this setup, for t longer than T, the signal gives the
difference in DFsv, td between t 2 T and t because the
reference is also influenced by the pump. The maximum
time delay to yield DFsv, td itself is limited to T, and T is
then limited by the system wavelength resolution. Here
the time delay is limited to a few picoseconds by use of
a 25-cm spectrometer with 0.2-nm resolution. To extend
the time delay range, a spectrometer with higher reso-
lution must be used. Otherwise not a time-division but
a space-division configuration must be used, as shown in
Fig. 1(b), where the reference and the probe travel along
different paths in a Mach–Zehnder interferometer to be
spatially overlapped after the sample with time displace-
ment T. However, the setup in Fig. 1(a) is employed here
because it is superior to that in Fig. 1(b) in the following
respects:

1. The setup of Fig. 1(a) is obtained by the addition of
only two more optical components, a beam splitter and a
mirror, to the pump–probe setup. This is the simplest
configuration of all the time-resolved interferometers de-
veloped so far.

2. The optical alignment process is much easier for
overlapping the reference and the probe either spatially
or temporally in the setup of Fig. 1(a) than in that of
Fig. 1(b).

3. The visibility of the interference fringes is higher
because both reference and probe pulses are transmitted
through the sample to yield the same spectra.

4. It is unnecessary to readjust the optical path differ-
ence between the reference and the probe when samples
are exchanged. To compensate for disadvantages with
respect to factors 3 and 4 for the setup of Fig. 1(b), one
must place identical samples in the probe and the refer-
ence paths.

5. Since the time-division scheme is employed, the
configuration is more stable against path-length fluctu-
ation caused by the oscillations of optical elements. It
is also less sensitive to beam deflection, because the path
difference between the reference and the probe is only the
two short arms of the Michelson interferometer. Hence,
we were able to obtain the data with a high signal-to-
noise ratio, as is shown below, even though a feedback
technique for stabilization was not used.

If setup of Fig. 1(b) is employed, we can set T ­ 0 in
Eq. (10) to obtain the spectra:

jEpr
0sv, td 1 Eref

0svdj2 ­ jEpr
0svdj2h1 1 expf22DKsv, tdg

1 2 expf2DKsv, tdgcos DFsv, tdj . (13)

From Eq. (13), if DKsv, td is known from the ordinary
pump–probe measurement, we can deduce DFsv, td
without the use of frequency-domain interference. How-
ever, it is difficult to stabilize T precisely at zero with
the space-division setup of Fig. 1(b). Even a small fluc-
tuation of T around T ­ 0 brings about serious inten-
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sity fluctuations in the spectrum as a result of the fac-
tor cosfvT 2 DFsv, tdg, making it difficult to evaluate
DFsv, td precisely. It is also difficult to determine the
sign of DFsv, td in the cosine function. In principle it
is ideal to obtain the sin DFsv, td dependence by set-
ting vT ­ py2, but this is difficult experimentally be-
cause the nonlinear chirp must be introduced into the
reference pulse.

E. Method of Data Analysis
Figure 4 shows signals observed by the FDI for an
R63 glass filter (Toshiba) at t ­ 20 fs and T ­ 410 fs
[Fig. 4(a)] and for CS2 at t ­ 240 fs and T ­ 370 fs
[Fig. 4(b)]. The interference spectra with and without
excitation (curves a and b) in the upper panels are the
averages over 20 cycles of the pump on and off, taken
for 4 s.

The DPS’s are given by the open circles in the
lower panels. With the normalized interference spec-
tra (curves a0 and b0 ) the phase shifts are calculated
from the ith fringe-valley wavelengths with and without
excitation, li

ex and li, as

DFslid ­ 2psli 2 li
exdysli11 2 lid , (14)

where li11 . li. Because our multichannel spectrometer
has a limited resolution (0.2 nm per channel), parabola
fitting was employed for determination of a valley wave-
length with three data points taken around the valley.

The normalized difference interference spectra
(curves c0 ) show the DTS when the fringe structures
are smoothed, because the spectra are calculated by
[Eq. (10) 2 Eq. (9)]yjEpr

0svdj2, which is proportional to
Eq. (7) if cos vT terms are ignored. That is, both the
DPS and the DTS can be simultaneously measured. In
what follows, however, the DTS are separately mea-
sured with the reference beam blocked to avoid fringe
structures.
The sign of DF depends on the sign of T. Since the
reference precedes the probe, T . 0 in Eq. (10). Then, if
DF . 0 (,0), the fringes shift to shorter (longer) wave-
lengths as in Eq. (14). If spatial interference is used, on
the other hand, it is difficult to determine the sign unless
a standard sample is used or a path difference is tenta-
tively introduced to allow one to monitor the direction of
the fringe shift. This is also one of the advantages of
frequency-domain interference.

To calculate the phase shift, we used not fringe peaks
but fringe valleys, because the systematic error in DF

is caused by the amplitude change DK and it is smaller
for the valleys. The systematic error is estimated in
Appendix A as

DF 2 DFm ,
f1 6 exps2DKdgdDKydv

T 2 dDFydv
, (15)

where DF and DFm are true and measured phase shifts,
respectively, and 1 and 2 correspond to fringe peaks and
valleys, respectively. Since exps2DKd . 0, the fringe
valleys cause smaller errors, which are estimated to be
less than 0.01 rad for CS2.2 For the R63 filter,1 on the
other hand, both exps2DKd and dDKydv are large near
610 nm, where the errors are estimated to be 0.1 rad at
most. Except in the immediate vicinity of 610 nm, how-
ever, the errors are negligible compared with the magni-
tudes of the phase changes. Note that these errors can
be reduced by an increase in T.

The phase shifts averaged over the probed spectral re-
gion, which are given at the upper right-hand corners
of the upper panels of Fig. 4 (0.44 and 20.25 rad), were
obtained by Fourier transformation of interference spec-
tra a and b in the upper panels [Eqs. (10) and (9)] into
the time domain to make the information for the whole
fringes available.13,15 The detailed procedure is given in
Appendix B. As is shown in Appendix B, if Epr

0std is an
Fig. 4. FDI signals. (a) R63 filter at t ­ 20 fs and T ­ 410 fs; (b) CS2 at t ­ 240 fs and T ­ 370 fs. The average phase shifts, (a)
0.44 rad and (b) 20.25 rad, are calculated from the FT. Upper panels, Directly observed interference spectra with excitation (curves a)
and without excitation (curves b) and the difference interference spectra (curves c) between them. Lower panels, Curves a, b, and
c normalized by the transmitted probe spectra to yield curves a0, b0, and c0, respectively. The open circles (DPS) are calculated
from the fringe-valley shifts between curves a0 and b0 as 2psli 2 li

exdysli11 2 lid, where li
ex and li are the ith fringe-valley

wavelengths with and without excitation, respectively.
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Fig. 5. Transmission spectrum of the R63 filter.

Fig. 6. DTS’s (solid curves) and DPS’s (open circles) for the R63
filter.

even function, then the Fourier-transformed data give ex-
actly the same values as those obtained by conventional
interferometers.

3. RESULTS AND DISCUSSION
To demonstrate the method and to study time-resolved
dispersion relations, we have measured two samples,
CdSxSe12x-doped glass (R63 filter) and CS2, because they
have large nonlinearities and their dynamics have been
studied in detail. The polarizations of all the pulses were
parallel, and all the experiments were performed at room
temperature.

A. CdSxSe12xCdSxSe12xCdSxSe12x-Doped Glass
The typical results of femtosecond phase spectroscopy
were obtained with a Toshiba R63 glass filter25 contain-
ing CdSxSe12x microcrystallites of a few weight percent.
The pump-pulse energy was 0.3 mJ, and the excitation
density was ,3.8 mJycm2. Figure 5 shows the transmis-
sion spectrum of the sample, and Fig. 6 shows DTS’s and
DPS’s for several time delays. In Fig. 7 the delay-time
dependence of the average phase change is plotted. The
average transmission change showed the same dynamics
as that of the phase.

In Fig. 8 normalized difference interference spectra
and DTS’s are plotted together. If the fringe structures
are smoothed, the difference interference spectra show
good agreement with the DTS’s, as expected from the
mathematical expressions for the former, [Eq. (10) 2

Eq. (9)]yjEprsvdj2, and the latter, Eq. (7). This agree-
ment demonstrates that both DTS’s and DPS’s can be
simultaneously measured by the FDI.

At 2100 fs, oscillatory behavior is seen in both DTS’s
and DPS’s. The oscillatory structures in DTS’s for nega-
tive time delays are well known as transient oscillations,
which are caused by the coherent coupling effect,26–30 but
the present result was the first observation, to our knowl-
edge, of an oscillating structure in a DPS.19 From 250
to 0 fs, the absorption saturation grows near 620 nm, ac-
companied by the negative transmission change for the
longer-wavelength side. From the oscillatory features of
the DTS at 2100 and 250 fs and the fact that the os-
cillating period of transient oscillations is inversely pro-
portional to the time delay, this negative change should
be assigned not to the induced absorption but to transient

Fig. 7. Delay-time dependence of DF for the R63 filter, derived
from the FT of the interference data. DTyT also shows the same
dynamics.

Fig. 8. Normalized difference interference spectra measured
with the FDI, and DTS’s measured with the reference pulses
blocked.
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Fig. 9. Iprstd, and N s2dstd, assumed for the calculation in
Figs. 10, 13, and 14 below, are shown in (a), (b), and (c),
respectively. Iprstd is placed at delay zero.

oscillations with a longer period. In other words, the sig-
nals exhibit blue shifts in the transmitted probe spectra as
well as in the absorption saturation. This is evidenced
by the rapid rise of the DPS from negative to zero de-
lay, which should cause the induced phase modulation31–34

(IPM) of the probe pulse. In this process the probe pulse
is phase modulated by the rapid change in the refractive
index in the medium to yield the frequency shift that is
proportional to the time derivative of the phase change.
Without the DPS one cannot tell whether the transmis-
sion change is due to the absorption change or to the spec-
tral shift of the probe. At 100 and 180 fs both phase and
transmission changes decrease from 620 to 640 nm with
wavelength, whereas at 20 and 50 fs they increase from
635 nm. Since this behavior can hardly be explained in
terms of semiconductor dynamics, it should also be at-
tributed to the transient oscillations with longer periods.
For delays longer than 100 fs, both DPS’s and DTS’s are
almost the same as those at 100 fs.

Since both average phase and transmission changes
show the same dynamics as a function of t in Fig. 7, the
experimental results for the R63 filter can be numeri-
cally simulated by assumption of a two-level system in
the first approximation [see Eq. (29) and Note 35]. The
third-order nonlinear polarization P s3dstd in a two-level
system for the pump–probe measurement consists of the
level-population term and the coherent coupling term.29

The linear susceptibility x s1dsvd and the third-order sus-
ceptibility x s3dsv, td that are due to the level-population
term are expressed by

x s1dsvd ­ F fP s1dstdgyEprsvd ­ 2mN0f2svd , (16)

x s3dsv, td ­ F fP s3dstdgyEprsvd

­ 2mf2svdF fEprstdN s2dstdgyEprsvd , (17)
where m is the transition dipole moment; N0 is the equi-
librated population difference; f2svd is the FT of the re-
sponse function f2std, which decays with phase relaxation
time T2; and N s2d is the second-order population-difference
change. The details of the derivation of Eqs. (16) and
(17) are given in Appendix C.

The coherent term, which is further decomposed into
the pump-polarization-coupling term and the perturbed
free-induction-decay term,29 was also calculated but is
not shown here because it makes little qualitative dif-
ference for the following two reasons: First, since the
same pulses are used for both the pump and the probe,
the coherent coupling term is equivalent to the level popu-
lation term at zero delay. Second, since the phase re-
laxation time of the Toshiba R63 filter is much shorter
than the pulse duration,36 the coherent coupling effect is
not significant, except for delays shorter than the pulse
duration.

Figure 9(a) shows the assumed temporal dynamics of
N s2dstd and Iprstd at zero delay, and Fig. 10 shows the
results of the numerical calculation of Eqs. (16) and (17)
with the following parameters:

T1 ­ 10 ps, T2 ­ 30 fs, tpr ­ tex ­ 60 fs ,

Ls­2pcyVd ­ 610 nm,

lprs­2pcyvprd ­ 620 nm , lexs­2pcyvexd ­ 620 nm ,

Fig. 10. Results of the simulation for the R63 filter. Upper
part, Real (dashed curves) and imaginary (solid curves)
parts of x s3dsv, td calculated from Eq. (17) for the condition
T2 , tpr ­ tex , T1 (T1 ­ 10 ps, T2 ­ 30 fs, tpr ­ tex ­ 60 fs,
L ­ 610 nm, and lpr ­ lex ­ 620 nm). The assumed temporal
dynamics is displayed in Fig. 9(a). 22 Im x s3d and 2Re x s3d

correspond to the DTS’s and the DPS’s, respectively. These
results reproduce the qualitative features of the experimental
results shown in Fig. 6. Lower part, x s1dsvd and the probe
spectrum.
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Fig. 11. Left-hand plots, Experimental results for CS2. Solid
curves, DTS; open circles, DPS. Right-hand plots, Results of the
simulation from Eqs. (20) and (21). Solid curves, DTS; dashed
curves, DPS.

where T1,2 are the energy and phase relaxation times,
tex,pr are the FWHM’s of the pump and the probe inten-
sities, vex,pr are the pump and the probe frequencies, and
V is the transition frequency. Here we made the rea-
sonable assumptions for this material that the energy re-
laxation time is much longer (T1 ­ 10 ps) and the phase
relaxation time shorter (T2 ­ 30 fs) than the pulse du-
ration and that the excitation is off resonant. Since the
real and the imaginary parts of x s3dsv, td are proportional
to the DPS and the DTS, respectively, as DF / 2Re x s3d

and DTyT / 22 Im x s3d, the results in Fig. 10 satisfac-
torily reproduce the typical features of the experimental
results shown in Fig. 6.

The reason that the approximation of a two-level sys-
tem works well is attributed to the band-edge excita-
tion. The absorption saturation at the band edge relaxes
only by interband relaxation. As a result the saturation
spectrum does not change in shape but changes only in
magnitude with the time delay, which is similar to the
saturation relaxation in a two-level system. Hence, if the
excitation is deeper into the band than in the present ex-
periment, such a simple approximation may not be used.

In Fig. 10, compared with x s1dsvd, x s3dsv, td exhibits
characteristic oscillatory behavior. This is explained by
the following equation:
x s3dsv, td ­ x s1dsvdF fEprstdN s2dstdgysEprsvdN0d , (18)

which is obtained by substitution of Eq. (16) into Eq. (17).
This shows that x s3dsv, td is different from x s1dsvd by
a factor of F fEprstdN s2dstdgysEprsvdN0d. Since N s2dstd de-
pends on t such that N s2dstd ­ N s2d0st 1 td fN s2dsvd ­
expsivtdN s2d0svdg, Eq. (18) can also be expressed as

x s3dsv, td ­ x s1dsvd
expsivtd
EprsvdN0

Z
dv0Eprsv0 d

3 exps2iv0tdN s2d0sv 2 v0 d . (19)

The oscillatory behavior is attributed to the
F fEprstdN s2dstdgysEprsvdN0d factor in Eq. (18) or the
expsivtd factor in Eq. (19). This factor represents
induced modulation effects; as discussed in Ref. 34, the
transient oscillations by the level-population term are
due to the induced amplitude modulation (IAM) and IPM
of the probe pulse. The negative transmission change
near zero delay is well reproduced by the simulation.
Since we assumed the two-level system in which excited-
state absorption is forbidden, the negative change is
unequivocally attributed to the pulse-modulation effects.
All the other nontrivial features in Fig. 6 are also well
reproduced by the simulation, so that they are attributed
to part of the transient oscillations with longer periods.

Because of the limited spectral range, quantitative
evaluation of the K–K relations cannot be performed,
but at least it can be stated that the results in Figs. 6
and 10 qualitatively satisfy the K–K relations: The
negative absorption change near 610 nm is accompanied
by the negative refractive-index change for the longer-
wavelength side. However, from the fact that the spec-
tral shift that is due to IPM depends not on the phase
itself but on the changing rate of the phase, it is sug-
gested that the K–K relations are not satisfied in Fig. 6.
A close link is expected between the pulse-modulation
effects and the breakdown of the K–K relations. This
is more clearly seen in the results for CS2, discussed in
the next subsection.

B. CS2

In the case of absorptive materials, it is difficult to dis-
criminate between the absorption change and the spec-
tral change of pulses by the modulation effects. Thus, to
let us discriminate the modulation effects more clearly,
a transparent sample CS2 in a 1-mm cell was measured.
The left-hand side of Fig. 11 shows both DTS’s and DPS’s.
The experimental conditions were the same as for the

Fig. 12. Delay-time dependence of DF (dots) for CS2, derived
from the FT of the interference data, and the fitting function
(solid curve) given by Eq. (20). Conditions B1, B2, and A are
satisfied at 250-, 50-, and 190-fs time delays, respectively (see
Section 4).
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R63 filter, except the excitation density is ,1.9 mJycm2.
Figure 12 shows the delay-time dependence of the average
phase change in the probed region.37 Since the femtosec-
ond pump pulse has a broad bandwidth, Raman frequen-
cies within the bandwidth are resonantly excited to cause
an inertial nuclear motion of CS2, which is time resolved
in Fig. 12 as a delayed rise of DF. On the other hand,
the instantaneous response that follows the pump-pulse
profile at zero delay is due to the nonresonant electronic
response.

The negative phase change is due to the positive non-
linear refractive index sn2d in CS2. Because of the non-
resonant observation region, in Fig. 11 there is no net
transmittance change; i.e., the spectrally integrated probe
intensity is unchanged with and without excitation for all
delays within experimental error. The spectral depen-
dence of the DTS and the DPS is attributed to spectral
changes of the probe pulse as a result of IPM, because
the results on the left of Fig. 11 can be reproduced by
the numerical simulation with only the time-dependent
phase change assumed as follows.

First, to yield the response function, the time evolution
in Fig. 12 was fitted to a phenomenological expression of
the femtosecond optical Kerr dynamics38–41 in CS2:

Dfstd ­ aIexstd 1 bustdexps2tytddf1 2 exps2tytrdg . (20)

The first term on the right represents the instantaneous
electronic response, where Iexstd is the normalized pump-
pulse intensity. The pulse fields are assumed to be
FT-limited hyperbolic-secant fields as in Eq. (C7) below.
The second term represents the nuclear orientational re-
sponse with decay and rise times of td and tr , respectively,
and a and b are appropriate constants. Although the
nuclear response consists of several origins with different
kinetics, it is enough to consider only the orientational
term for fitting the behavior until a 200-fs time delay.

We substitute td ­ 1.6 ps and tr ­ 75 fs from the
literature,39,41 tpr ­ tex ­ 50 fs, ayb ­ 1y0.36, and
20.8 rad for the peak phase change. The solid curve
in Fig. 12 is the fitting function Dfstd. Near zero de-
lay Dfstd shows a sharper peak than the experimental
plot DFstd because DFstd is expressed as the convolu-
tion between Dfstd and the probe intensity jEpr

0stdj2, as
indicated in Eq. (B7) below.

Next, with the fitted response function Dfstd, the fol-
lowing numerical calculations are performed34:

Eprstd ­ E1stdexpsivprtd ,

Eprst, td ­ E1stdexpfivprt 1 iDfst 1 tdg ,

F fEprstdg ­ RsvdexpfiFsvdg ,

F fEpr st, tdg ­ Rsv, tdexpfiFsv, tdg ,

DTyT sv, td ­ fR2sv, td 2 R2svdgyR2svd ,

DFsv, td ­ Fsv, td 2 Fsvd . (21)

The results are shown on the right-hand side of Fig. 11.
Note that the calculations above are reduced to the level
population term in the perturbation limit as discussed in
Ref. 34. The calculated results on the right reproduce
the characteristic features of the experimental results on
the left. Since only the phase change is assumed here,
it is verified that the observed dispersion relations are
caused by the IPM of the probe pulse.

In Fig. 11 the DTS’s show spectral shifts and broaden-
ing of the probe at 650 and 0 fs, respectively, and both
DPS’s and DTS’s show transient oscillations at 6120 fs.
These signals can be explained from Fig. 12. At zero
delay, for example, since the probe phase decreases at
the leading edge and increases at the trailing edge, the
probe spectrum shows both red and blue shifts, resulting
in spectral broadening. This is analogous to self-phase
modulation,42,43 since the pump and the probe can be iden-
tified owing to their complete overlap at zero delay. In
contrast, at 190 fs the spectra show little wavelength de-
pendence; i.e., there is a flat spectrum in the DPS and
no sizable signal in the DTS, as is expected for a non-
resonant observation region. This is because the probe
phase is not modulated appreciably at this delay, owing
to an almost steady phase change as shown in Fig. 12.
Note also that at 120 fs the DTS’s show an increase to-
ward longer wavelengths if the oscillations are eliminated
by smoothing. This is because at this delay the probe ex-
periences an increase in the refractive index that is due to
the inertial nuclear motion, resulting in a slight red shift.
This delayed nuclear motion is time resolved in Fig. 12.

Concerning the K–K relations, the results at 2120 and
250 fs satisfy the relations qualitatively, while at 220
and 0 fs the results show a qualitative difference from
the K–K relations. In particular, at 0 fs both the DTS
and the DPS are even functions with respect to the probe
center frequency. This is unusual, because the K–K
inversion transforms even functions into odd functions.
Further, the signals at 50 fs seem to satisfy the K–K rela-
tions with reversed signs, because the DPS has the same
sign as that at 250 fs, and the DTS has the sign oppo-
site that at 250 fs at corresponding wavelengths. So do
the signals at 120 fs, where the relative phase of the os-
cillations between the DTS and the DPS is shifted by p

from that at 2120 fs. At 190 fs both the DTS and the
DPS are almost constant, so that the K–K relations are
not violated. In summary, the signals for CS2 show un-
usual dispersion relations, depending on the time delay,
in marked contrast to those for the R63 filter, exhibiting
the ordinary K–K relations qualitatively. This will be
discussed in detail in Section 4.

C. Transient Oscillations
We have observed transient oscillations in the DTS and
the DPS for both the R63 filter and CS2. Transient oscil-
lations in the DTS are reported by many authors26–30 and
are considered to be caused by the following mechanism.
The transient grating is formed by the coupling of a
pump field and a probe-induced polarization to diffract the
pump partially in the direction of the probe. The inter-
ference between the probe and the diffracted pump causes
the spectral oscillations. The phenomenon is called per-
turbed free-induction decay29 (PFID). When the probe
pulse is short enough to be well approximated by a d func-
tion, the oscillations that are due to PFID appear only at
negative delays until the phase relaxation time. In fact,
in the previous reports26–30 the oscillations were observed
only at negative delays, because the previous experiments
were performed for resonant materials with probe pulses
much shorter than the phase relaxation time.
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There is, however, another mechanism that will al-
low the oscillations,34 which are produced by the level-
population term, to appear with the same amplitude for
both negative and positive delays, as in the present study.
This can be readily understood by use of the FT as
follows.34 When 1 .. Dk .. Dn, the probe field is

Estdexpfiv0t 2 Dkst 1 tdv0Lycg

, fEstd 2 dEst 1 tdgexpsiv0td

°!
FT Esv 2 v0d h1 2 d expfisv 2 v0dtgj ,

DTyT sv, td , 22d cossv 2 v0dt ,

DFsv, td , 2d sinsv 2 v0dt . (22)

When 1 .. Dn .. Dk,

Estdexpfiv0t 2 iDnst 1 tdv0Lycg

, fEstd 2 idEst 1 tdgexpsiv0td

°!
FT Esv 2 v0d h1 2 id expfisv 2 v0dtgj ,

DTyT sv, td , 2d sinsv 2 v0dt ,

DFsv, td , 2d cossv 2 v0dt . (23)

Here d ,, 1, and the response of Dnstd and Dkstd is as-
sumed to follow the pump intensity profile I std. Owing to
the expfisv 2 v0dtg terms, a net phase change of the probe
is accompanied by a spectral shift in the DTS, whereas a
net amplitude change is accompanied by a spectral shift in
the DPS. Since the electronic response term follows the
pump-pulse profile instantaneously, the signals for CS2

are approximately expressed by Eqs. (23), except near
zero delay, where the Taylor expansion to first order is
insufficient, as is demonstrated below with Eq. (33).
Physically the modulations of the probe phase and the
amplitude, IPM and IAM cause the oscillations that ap-
pear for both negative and positive time delays within
the probe-pulse duration. If the phase relaxation time is
much shorter than the probe pulse, then the PFID term
also gives the same amplitude of oscillations for both
negative and positive delays, although the oscillations
by PFID are different in mechanism from those by IPM
and IAM.

4. KRAMERS–KRONIG RELATIONS IN
TIME-RESOLVED SPECTROSCOPY
The K–K relations1,2 connect the real and the imaginary
parts of the linear susceptibility xsvd. For the nonlin-
ear susceptibility x sndsv1, . . . , vnd, with tunable monochro-
matic light sources there also exist dispersion relations
similar to the K–K relations as long as the causality
condition is satisfied for a response function.3–6 On the
other hand, in time-resolved spectroscopy with pulsed
light sources the standard K–K relations are not valid, be-
cause the pump pulse induces the time-dependent change
in the state of a material even before the probe field
is applied, resulting in the causality condition’s being
broken between the probe field and the probe-induced
polarization.8 Since the DPS and the DTS are propor-
tional to the change in the real and the imaginary parts of
the susceptibility, respectively, the experimental results
here are good samples to be compared directly with the
K–K relations. The dispersion relations for both experi-
mental and calculated results show a larger discrepancy
from the K–K relations for CS2 than for the CdSxSe12x-
doped glass. This result is explained by the theoretical
treatment of time-resolved dispersion relations along the
line of the previous publication,8 and useful practical cri-
teria for applying the K–K relations to time-resolved data
are deduced.

A. Numerical Simulations
To study characteristics of time-resolved dispersion rela-
tions, we have performed the numerical simulations from
Eqs. (16) and (17) in the following three cases:

1. T2 , tpr ­ tex , T1,
2. tpr ­ tex . T2 . T1,
3. tpr ­ T1 , T2 , tex.

The first case is already calculated in Figs. 9(a) and
10 for simulating the results for the R63 filter and may
be most frequently encountered experimentally among
the three cases. In this case the probe-pulse duration
is comparable with the rise time of N s2dstd, whereas it is
much shorter than the decay time, so that the distortion
of x s3dsv, td from x s1dsvd is significant at zero delay but
not at 100 fs.

The second case is shown in Figs. 9(b) and 13 for the
conditions

T1 ­ 15 fs, T2 ­ 30 fs, tpr ­ tex ­ 60 fs,

L ­ lpr ­ lex ­ 620 nm .

In this case the distortion is significant for all x s3dsv, td’s,

Fig. 13. x s3dsv, td calculated from Eq. (17) for the condition
tpr ­ tex . T2 . T1 (T1 ­ 15 fs, T2 ­ 30 fs, tpr ­ tex ­ 60 fs,
and L ­ lpr ­ lex ­ 620 nm). The assumed temporal dynamics
is displayed in Fig. 9(b). 22 Im xs3d and 2Re x s3d correspond
to DTS’s and DPS’s, respectively. Upper part, Real (dashed
curves) and imaginary (solid curves) parts of x s3dsvd. Lower
part, xs1dsvd and the probe spectrum.
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where the distortion is caused by IAM because of the
exact resonance. At 250 and 100 fs it seems that the
K–K relations and the K–K relations with reversed signs,
respectively, hold. This is analogous to the signals for
CS2 at 650 fs in Fig. 11. Clearly known from x s3dsv, td
at 100 fs, in this example the modulation effect gives
a larger contribution to the signal than the intrinsic
spectral change, x s1dsvd, in the system. This is because
N s2dstd changes as rapidly as Eprstd and because T2 is
shorter than tpr such that x s1dsvd has a weak wavelength
dependence in the probed spectral region.

The third case is shown in Figs. 9(c) and 14 for condi-
tions that are the same as in the second case, except that
tpr ­ 15 fs. In Fig. 14 no oscillations appear, because the
probe pulse is short enough to be insensitive to the modu-
lation effect. (As mentioned in Subsection 3.C, even for
this condition the PFID term still gives significant oscilla-
tions for negative delays as long as 2T2.) Since x s3dsv, td
is almost proportional to x s1dsvd throughout the delays,
the K–K relations hold approximately for all x s3dsv, td.

From Figs. 9, 10, 13, and 14 we can expect the fol-
lowing criteria for the validity of the K–K relations in
time-resolved spectroscopy: The distortion from the
K–K relations becomes significant when the probe pulse
undergoes a rapid change within the pulse duration to
suffer induced modulation effects. If the probe pulse is
much shorter than the pump pulse, as in the third case,
or if the delay time is much longer than the probe-pulse
duration, as in the first case, then the K–K relations hold
approximately. This prediction is analytically treated in
the following subsections.

B. Theoretical Consideration
The K–K relations are based on causality; i.e., there is no
polarization induced before an external field is applied.
The relations are derived from the complex integration of
xsvdysv 2 v0d in the lower half of the complex v plane,
where xsvd has no singularities as a consequence of the
causality condition.1,2

The polarization P std induced in a material by a probe
pulse field Estd is expressed as

P std ­ xstd ≠ Estd ­
Z `

0
dt0xst0 dEst 2 t0 d , (24)

where ≠ denotes the convolution operation, xstd is a po-
larization response function that is zero for t , 0 by the
causality condition, and time zero is marked at the probe-
pulse peak. [xstd corresponds to f2std in Eqs. (C5) below.]
The linear susceptibility function is given by the FT of
Eq. (24) as

xsvd ­ F fP stdgyEsvd ­
Z `

0
dt exps2ivtdxstd . (25)

The function xsvd satisfies the K–K relations because it
has no poles in the lower v half-plane, as is readily de-
duced from t . 0 in exps2ivtd. In time-resolved spec-
troscopy, however, the causality condition is not satisfied
between the incident probe field and the induced polar-
ization because a pump pulse is applied to cause the fol-
lowing polarization change:

DP std ­ xstd ≠ fEstdDNstdg

­
Z `

0
dt0xst0 dEst 2 t0 dDNst 2 t0 d , (26)
where DNstd represents the change in the level-
population difference that is due to the pump and
depends on t such that DNstd ­ DN 0st 1 td. [DNstd cor-
responds to N s2dstd in Eq. (C2) below but is not necessarily
limited to second order here.] Equation (26) describes
the level-population term for a two-level system. The
coherent coupling term is discussed in Subsection 4.F.
From Eq. (26), the susceptibility change is expressed by

Dxsvd ­ F fDP stdgyEsvd

­ xsvd
Z `

2`

dt exps2ivtdEstdDNstdyEsvd . (27)

In general Dxsvd has poles in both half-planes because
the integration is over all t in Eq. (27). Therefore the
K–K relations are not generally satisfied. However, the
K–K relations are strictly satisfied in the following three
special cases:

A. DNstd is steady or Estd is a d function.
B. DNstd is zero over t , 0 (negative delays).
C. Estd ­ 0 over t , 0.

In the following subsections these conditions are closely
examined. When we claim below that the K–K relations
are applicable, it is assumed that the DTS’s (or the DPS’s)
are known in the whole frequency range, because theoret-
ically the tail of the probe-pulse spectrum has a finite am-
plitude for any large frequency. Experimentally this is
the ideal case in which the signal-to-noise ratio is infinite.

Fig. 14. x s3dsv, td calculated from Eq. (17) for the condition
tpr ­ T1 , T2 , tex (T1 ­ 15 fs, T2 ­ 30 fs, tpr ­ 15 fs,
tex ­ 60 fs, and L ­ lpr ­ lex ­ 620 nm). The assumed
temporal dynamics is displayed in Fig. 9(c). Upper part, Real
(dashed curves) and imaginary (solid curves) parts of x s3dsv, td.
Lower part, x s1dsvd and the probe spectrum.
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C. Steady-State Condition
If condition A is satisfied, the K–K relations hold as
follows:

A1. When DN std is constant sDN0d,

Dxsvd ­
xsvd
Esvd

Z `

2`

dt exps2ivtdEstdDN0 ­ DN0xsvd .

(28)

A2. When Estd is a d function fE0dstdg,

Dxsvd ­
xsvd
E0

Z `

2`

dt exps2ivtdE0dstdDNstd

­ DNs0dxsvd ­ DN 0stdxsvd (29)

(Ref. 35). Note that conditions A1 and A2 are physi-
cally equivalent because both can be described as follows:
DNstd is steady during the probe-pulse duration. There-
fore we can call them both the steady-state condition.
Under the steady-state condition the K–K relations are
satisfied because the probe pulse is not subject to the
induced modulation effects, and the wavelength depen-
dence of Dxsvd is caused only by an intrinsic suscepti-
bility change in the material. Why the K–K relations
hold approximately at 100 fs in Fig. 10 and at all delays
in Fig. 14 is explained by the steady-state condition.

Let us examine whether the steady-state condition is
satisfied for the experimental results in Figs. 6 and 11 by
using the delay-time dependence DFstd in Figs. 7 and 12,
which is approximately proportional to Dfstd or DNstd.
For the R63 filter, DFstd is nearly steady at 100 and
180 fs within the probe-pulse duration in Fig. 7, to sat-
isfy the condition. In Fig. 6, therefore, the K–K relations
hold approximately at 100 and 180 fs. For CS2, at 190 fs
the DTS shows zero signal and the DPS shows a flat spec-
trum. These signals can be explained self-consistently
as follows: At 190 fs the condition is satisfied because
DFstd is nearly steady, as seen in Fig. 12. Then, from
Eq. (28), Dxsvd should be proportional to xsvd. Fur-
ther, from the large detuning condition it is expected that
Im xsvd will be zero and that Re xsvd will be constant.
Consequently, Im Dxsvd (/DTS) is zero and Re Dxsvd
(/DPS) is constant, as was observed.

Here the K–K relations are discussed only for the
probed spectral region, but if the measurement is per-
formed in the whole frequency range with an ideal
d-function probe pulse, Re Dxsvd near 620 nm should
be related through the K–K relations to Im Dxsvd far
from 620 nm. For example, the DPS that is due to the
nuclear response at 120 and 190 fs in Fig. 11 should be
related to the DTS, which is caused by excitation of all
the Raman modes within the pump bandwidth. There
are several studies of low-frequency dispersion relations
of Re xs3d and Im x s3d by the Raman-induced Kerr ef-
fect, such as the FT four-wave mixing method.44 In
such methods femtosecond optical-heterodyne-detected
optical-Kerr-effect signal intensity as a function of time
delay is Fourier transformed to yield the low-frequency
dispersion as a function of Dv, where Dv is a difference
frequency within the pump bandwidth, giving information
essentially equivalent to frequency-domain dynamic light-
scattering data.45 However, the present measurement is
distinctive in that the high-frequency (visible-frequency)
dispersion as a function of the probe frequency is ob-
tained, which is a Fourier transform of probe-induced
polarization decay as a function of time. Hence disper-
sion relations that are due to the nonresonant electronic
response can be directly measured as shown at 220 and
0 fs in Fig. 11 although the true dispersion is distorted by
the IPM effect, owing to the lack of time resolution of the
pulse. The true dispersion is distorted by the IPM effect.
The difference from the conventional Kerr measurements
is clearly described in Appendix D.

D. Kramers–Kronig Relations with Reversed Signs
Condition A is a basic criterion for applying the K–K re-
lations under which the induced modulation effects are
avoided. On the other hand, conditions B and C are
rather special ones, under which the modulated spectra
of the probe pulse also satisfy the K–K relations. For
condition B there are two cases, as follows:

B1. When DNstd is zero over t , 0 (negative delays),
then

Dxsvd ­
xsvd
Esvd

Z `

0
dt exps2ivtdEstdDNstd . (30)

This function has no poles in the lower v half-plane, so
that it obeys the K–K relations.

B2. When DNstd is zero for t . 0 (positive delays) and
xsvd is constant sx0d, then

Dxsvd ­
x0

Esvd

Z 0

2`

dt exps2ivtdEstdDN std . (31)

Since this function has no poles in the upper v half-plane,
it obeys the K–K relations with reversed signs.

In order that xsvd ­ x0, the rapid dephasing or large
detuning condition must be satisfied.34 Note that, with
condition A1, it is enough that DNstd ­ DN0(constant) for
t , 0 and t . 0 in the above two conditions.

For B1 and B2 additional conditions are required be-
cause 1yEsvd may generally cause singularity. First,
Esvd should be a real function, because otherwise the
relation between the real and the imaginary parts of
1yEsvd, which has nothing to do with the K–K relations,
is reflected in Dxsvd. Second, 1yEsvd must not have
poles for jvj , ` in the lower and the upper half-planes for
B1 and B2, respectively. Third, Dxsvdysv 2 v0d should
fall off more rapidly than 1yv. Since Dxsvd can be
rewritten in the form

Dxsvd ­ xsvd
Z

dv0DNsv0 dEsv 2 v0 dyEsvd , (32)

it is necessary that Esv 2 v0 dyEsvd ! Osvdd, with d % 0
as v ! `. These conditions are satisfied for, e.g., a
hyperbolic-secant or Lorentzian envelope Esvd but not
for a Gaussian envelope Esvd. Since the envelope of a
mode-locked laser pulse is well approximated by a
hyperbolic-secant function,46 the additional conditions
can be satisfied. Note that the additional conditions are
not sufficient but are only necessary conditions.47
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For the R63 filter, at negative delays the K–K rela-
tions hold qualitatively because DFstd rises at the trailing
edge of the probe pulse to satisfy condition B1, whereas
near zero delay the relations do not hold, because none
of the conditions are satisfied owing to the rapid in-
crease of DFstd over the whole probe-pulse duration. In
Fig. 10 x s3dsv, td at zero delay is distorted by the induced
modulation effects to show dispersion relations substan-
tially different from x s1dsvd, but qualitative features of
the dispersion relations are still consistent with the K–K
relations, because the wavelength dependence of x s1dsvd
dominates that of x s3dsv, td in Eq. (18).

For CS2, at 250 fs condition B1 is approximately satis-
fied because DFstd rises at the trailing edge of the pulse,
whereas at 50 fs condition B2 is approximately satisfied
because DFstd decays to a constant at the leading edge
and xsvd has negligible wavelength dependence. There-
fore the standard and the sign-reversed K–K relations
hold approximately at 250 and 50 fs, respectively. As
mentioned in Subsection 3.C, these signals can also be
explained qualitatively by relations (23), where the real
part scos vtd and the imaginary part ssin vtd of expsivtd
are strictly related to each other through the K–K rela-
tions but the signs of the relations depend on t. For IPM
spectra the DPS cannot be reproduced from only the DTS
by the K–K relations; additional information, the sign of
t or the time derivative of the phase change, is required.
It is considered that the sign reversal of the K–K rela-
tions is peculiar to time-resolved spectroscopy, where the
change can occur as a result of the pump even before the
probe field is applied.

To fulfill condition B2, xsvd must be constant. This is
so only when the phase relaxation time is much shorter
than the pulse duration (rapid dephasing) or the detuning
is much larger than the pulse spectral width (large detun-
ing) as in the case of CS2. Because of this restriction the
sign-reversed relations are usually not observed for reso-
nant materials. For example, the signals for CdSxSe12x-
doped glass qualitatively show not the sign-reversed re-
lations but the standard K–K relations, even for positive
delays. Although the numerical simulation exhibits the
sign-reversed relations at 50 and 100 fs in Fig. 13, ex-
treme conditions are imposed there, such as T1 ­ 15 fs
and T2 ­ 30 fs; i.e., dephasing is due only to energy
relaxation.

On the other hand, condition B1 has no such restriction.
Therefore it can be agreed that in time-resolved spec-
troscopy the ordinary K–K relations are approximately
applicable for negative time delays. This result is im-
portant because an optical Stark effect in time-resolved
spectroscopy, which is caused by the PFID term in the
third-order approximation, appears from negative to zero
delay.29,30 Condition B1 assures us that the K–K re-
lations can be applied to optical-Stark-effect signals for
negative delays to yield the refractive-index change in the
spectral range of absorption.

For CS2, at zero delay both real and imaginary parts
are even functions with respect to the probe center fre-
quency, that is, substantially different from the standard
K–K relations because none of the conditions is satis-
fied. Since the signal at zero delay is caused mainly by
the instantaneous electronic response implied in Eq. (20),
we have performed the simulation, Eqs. (21), assuming
Dfstd ­ aIexstd, to obtain the result shown at the top of
Fig. 15. Here, both the DTS and the DPS are even func-
tions, from the time symmetry of Dfstd, whereas the zero-
delay signal in Fig. 11 shows a slight asymmetry that is
due to the contribution of the nuclear response term in
Eq. (20).

The calculated equation for the top plot of Fig. 15 can
be expanded as follows:

EstdexpfiDfstdg ­ Estdf1 1 iDfstd 2 s1y2dDf2std

2 siy6dDf3std 1 . . .g . (33)

Since Dfstd is an even function with respect to time zero,
the FT of Eq. (33) is an even function with respect to zero
frequency. In the lowest order the spectral broadening
observed in the DTS is caused by the third term on the
right-hand side, 2s1y2dDf2std (fifth-order nonlinearity),
whereas the broadening in the DPS is caused by the
second term iDfstd (third-order nonlinearity). Note that
the s4m 1 1dth order of nonlinearity is purely imaginary
and that the s4m 2 1dth order is purely real.

The result in the top plot of Fig. 15 can be divided into
two parts, one originating from Df2std for t , 0 (left)
and the other from Df1std for t . 0 (right), as shown

Fig. 15. Top, DTS (solid curves) and DPS (dashed curves) at
zero delay calculated from Eqs. (21) with the phase change
Dfstd ­ aIexstd. Middle, DTS (solid curves) and DPS (dashed
curves) calculated with Df6std, shown in the bottom plots.
The sum of both middle plots gives the top plot. Bottom,
Time evolution of the phase change Df6std, which satisfies
Df2std 1 Df1std ­ Dfstd. Left, Df2std ­ aIexstd for t , 0,
Df2std ­ aIexs0d for t . 0. Right, Df1std ­ 0 for t , 0,
Df1std ­ aIexstd 2 aIexs0d for t . 0.
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in the bottom plots of Fig. 15. The left-hand plot sat-
isfies condition B1 for the standard K–K relations, and
the right-hand plot satisfies condition B2 for the sign-
reversed K–K relations.47 Their sum, on the other hand,
never satisfies the K–K relations, because complex inte-
gration cannot be performed in either half-plane without
leaving residues.

E. Non-Transform-Limited Case
When non-transform-limited pulses are used for the
probe, i.e., when Esvd is a complex function, the K–K
relations generally do not hold, except for condition A1,
because the relation between the real and the imaginary
parts of the pulse field, which has nothing to do with the
causality principle, is reflected in the signals.48–50 How-
ever, there is a special case in which the K–K relations
hold even for non-transform-limited pulses, as follows:

C. Estd ­ 0 for t , 0, such as a single-sided exponen-
tial.

This is rephrased as

C. The real and the imaginary parts of Esvd are re-
lated through the K–K relations.

In this case the K–K relations apply to Dxsvd for any
time delay. When Estd ­ 0 for t . 0 and xsvd ­ x0,
the relations with reversed signs apply as in the case of
condition B. Note that displacing Estd from the time ori-
gin does not lead to condition C’s being satisfied, because
this displacement is equivalent to a change of time delay,
i.e., the multiplication by a factor of expsivtd as in
Eq. (19).

If condition C is satisfied, the K–K relations hold even
at zero delay for CS2. Figure 16 is the simulation at zero
delay, where it is assumed that the probe has a single-
sided-exponential envelope Estd with a 30-fs FWHM in-
tensity and Dfstd is the same as in Fig. 15. In Fig. 16
the K–K relations hold rigorously, because both the DTS
and the DPS are limited by a finite value to satisfy
Dxsvd ! 0svdd with d % 0 as jvj ! `. This is proved
in Appendix E.

F. Weak-Probe Condition
Only the level-population term [Eq. (26)] has been con-
sidered in the deduction of conditions A–C, but a similar
argument can apply to the coherent coupling terms, as
follows. The coherent coupling term, to second order in
the pump field and to first order in the probe field, is, for
example, expressed as

DPcstd ­ xstd ≠ fEexstdDNcstdg ,

DNcstd ­ hstd ≠ fEex
pstdP stdg

­
Z t

2`

dt0hst 2 t0 dfEex
pst0 dP st0 dg , (34)

where the asterisk denotes the complex conjugate, Eexstd
is a pump-pulse field, and hstd is a population-response
function that is zero for t , 0 [corresponding to f1std
in Eqs. (C5)]. This is the PFID term, which has al-
ready been mentioned frequently in this paper. For
condition A, if Estd ­ E0dstd, P std ­ E0xstd, from Eq. (24).
Then it can readily be shown that DPcstd ­ 0 for t , 0.
Therefore condition A holds for this term also. For
condition B, if Eexstd ­ 0 for t , 0 and t . 0, the Fourier
integration can be over t . 0 and t , 0, respectively.
Further, the susceptibility change is expressed by

Dxcsvd ­ xsvd
Z

dv0Eexsv0 dDNcsv 2 v0 dyEsvd

­ xsvd
Z

dv0Eexsv0 dhsv 2 v0 d
Z

dv00Eex
psv00 d

3 xsv 2 v0 2 v00 dEsv 2 v0 2 v00 dyEsvd , (35)

which requires the same additional conditions for Esvd.
Therefore condition B also holds. Even for the higher
order in the pump field, one can readily see that a similar
argument can be made insofar as the probe field is weak
enough to be limited to first order.

In summary, conditions A and B are criteria that are
valid for time-resolved signals with any order of nonlin-
earity in the weak-probe-field limit. To satisfy either of
conditions A and B, it is necessary that the probe field
be weak enough not to cause nonlinear change by the
probe itself. (Condition C is the exception for which the
weak-probe condition is not necessary, as is discussed in
Appendix E.) From this viewpoint the signals at zero de-
lay for CS2 do not satisfy the weak-probe condition, be-
cause the pump can be identified with the probe, owing to
the complete overlap of the pump and the probe, so that
the polarization change is expressed not by the first order
in the probe field but, effectively, by a higher order.

G. Relation with Steady-State Nonlinear Spectroscopy
In this subsection we discuss the relation between time-
resolved spectroscopy and nonlinear spectroscopy with
tunable monochromatic light.

If we assume the long-pump-pulse limit, in which

Fig. 16. Upper plot, DTS and DPS (dashed curve) at zero delay
and the probe spectrum, calculated for condition C. Lower plot,
Temporal dynamics used for calculating the upper plot. The
probe-pulse shape is a single-sided exponential, and the phase
change is Dfstd ­ aIexstd, which is the same as that used in
Fig. 15.
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steady-state condition A1 is satisfied, we obtain the non-
linear susceptibility with tunable monochromatic light;
for a steady monochromatic pump, Eq. (17) becomes

x s3dsvd ­ 2mN0
m3

"3

i
2

1
isv 2 Vd 1 1yT2

T1

T2

3
1

svex 2 Vd2 1 s1yT2d2 E2 . (36)

We obtain this function by tuning a probe light over the
whole frequency, and it strictly obeys the K–K relations.
However, if the probe is also used for the pump, to cause
saturation by the probe itself, Eq. (36) is written as

x s3dsvd ­
N0m2

"
i

1
isv 2 Vd 1 1yT2

T1

T2

1
sv 2 Vd2 1 s1yT2d2

3

√
m

"
E

!2

. (37)

This function has poles in both the upper and the
lower half-planes, so that spectra for self-saturation
by the probe itself do not obey the K–K relations.2

Equation (37) is the perturbation limit of

xssvd 2 x s1dsvd ­
N0m2

"

"
V 2 v 2 iyT2

sV 2 vd2 1 s1yT2d2 1 juj2T1yT2

2
V 2 v 2 iyT2

sV 2 vd2 1 s1yT2d2

#
, (38)

where u is the pump Rabi frequency given by u ­ mEy".
The first term xssvd is the steady-state solution2 of the
optical Bloch equations. This term can be rewritten as

xssvd ­
m2

"
Nssvd

V 2 v 2 iyT2

sV 2 vd2 1 s1yT2d2
, (39)

where Nssvd is expressed as

Nssvd ­ N0
sV 2 vd2 1 s1yT2d2

sV 2 vd2 1 s1yT2d2 1 juj2T1yT2

. (40)

This is the steady-state solution of the population differ-
ence without the perturbation approximation. If Nssvd
is prepared by a monochromatic pump fixed at v ­ vex,
then the real and the imaginary parts of Eq. (39) are
rigorously related through the K–K relations because
Nssvd ­ Nssvexd ­ constant.51 Since the steady-state so-
lution xssvd is derived without the perturbation approxi-
mation, the K–K relations hold for any large pump field
E (/u) beyond the third-order perturbation regime if the
nonlinear change is caused by a monochromatic pump and
if the probe field is limited to first order.4 Even with
multicolored pump beams, if their frequencies are fixed
while the probe frequency is scanned over the whole fre-
quency the K–K relations are strictly satisfied. This is
the criterion for the K–K relations to be applicable in
nonlinear spectroscopy with tunable monochromatic light.
Condition A in time-resolved spectroscopy is a natural ex-
tension of this criterion, since it can be expressed in the
frequency domain as “the frequency range of the Fourier
component of the nonlinear dynamics is much narrower
than that of the probe,” whereas conditions B and C are
specific to time-resolved spectroscopy.

5. CONCLUSIONS
The breakdown of the K–K relations is caused by induced
modulation effects. As is known from condition A2, for
which distortion by modulation effects is absent, the
modulation effects appear as long as a probe-pulse dura-
tion is finite. When a more rapid phenomenon than the
time resolution is probed, the modulation effects become
evident and mask the response function, which obeys the
causality principle. In other words, the finite spectral
width of the probe, which is responsible for the finite
time resolution, prohibits the correct observation of the
response function over the whole frequency range ow-
ing to modulation effects. To obtain dispersion relations
that rigorously satisfy the K–K relations, a d-function
probe pulse must be used.

The time-resolved dispersion relations for nonreso-
nant materials such as CS2 are due only to the induced
modulation effects, F fEstdDN stdgyEsvd, which differ sub-
stantially from the standard K–K relations. For absorp-
tive materials such as the R63 filter, on the other hand,
the dispersion relations depend on both the intrinsic
susceptibility change, xsvd, and the modulation effects,
F fEstdDN stdgyEsvd, so they are not much different from
the standard K–K relations owing to the factor of xsvd.
In general, near zero delay the modulation effects give
significant distortion from the K–K relations owing to
a rapid rise of the nonlinear change, whereas for longer
delays the distortion is not significant, owing to slow
relaxation of the nonlinear change.

The conditions for which the K–K relations are appli-
cable in time-resolved spectroscopy are summarized as
follows:

A. The nonlinear change is steady within the probe-
pulse duration such that the modulation effects are ab-
sent. For example, the probe pulse is much shorter than
the pump pulse, or the delay time is much longer than
the probe-pulse duration.

B. In the case of transform-limited probe pulses, the
probe-pulse peak arrives at the sample earlier than the
nonlinear change occurs, i.e., at negative time delays.

C. In the case of non-transform-limited probe pulses,
the real and the imaginary parts of the FT of the probe
field are related through the K–K relations.

For condition A or B to be satisfied, it is necessary that
the probe field be weak enough to be limited to first order
in the nonlinear change.

The advantages of the FDI lie not only in its simple
setup, stability, and simultaneous measurements of both
the DTS and the DPS with a multichannel spectrom-
eter but also in higher time resolution with a single
measurement that uses the whole probe bandwidth simul-
taneously rather than with measurements that use one
wavelength after another and spatial interference, where
the bandwidth of the probe is reduced by wavelength se-
lection. Even if spatial interference is detected through
a multichannel spectrometer with T ­ 0, as is discussed
with Eq. (13), it is difficult to obtain sin DFsv, td depen-
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dence for all v. These advantages become more evident
if femtosecond white-light continuum pulses are used.49,50

Femtosecond phase spectroscopy can solve the following
problems, for example: First, because the DTS and the
DPS carry mutually independent information that cannot
be reproduced by the K–K relations, owing to the induced
modulation effects, direct measurement of both the DTS
and the DPS is necessary to extract the intrinsic spectral
change from the modulated spectra. This problem is cru-
cial when multilevel systems are studied.52 Second, new
aspects of femtosecond responses, especially those that
are due to nonresonant excitation, can be illuminated,
such as an optical Stark shift in excitonic states and opti-
cal Kerr dynamics in transparent Kerr media. The for-
mer is nothing but a net phase change in the resonant
region in terms of phase spectroscopy, so that the shift
can be better characterized by the DPS. For the latter
the high-energy dispersion in the visible region can be
studied by measurement of the DPS by use of continuum
pulses, while by the conventional methods such as FT
four-wave mixing44 only the low-energy dispersion that
is due to the nuclear response is obtained. Even though
wavelength selection of the continuum is employed with
the conventional methods, time resolution is sacrificed
compared with that for femtosecond phase spectroscopy.

In the present paper transform-limited pulses are used
in the experiments and assumed for theoretical analyses.
However, if femtosecond continuum pulses are used, then
the pulse chirp is unavoidable, owing to group-velocity
dispersion of optical elements, so the effect of the chirp
must be carefully treated. It is important to study dis-
persion relations measured with chirped pulses and the
applicability of the K–K relations to chirp-compensated
spectra. These problems will be treated elsewhere.50

APPENDIX A
The systematic error that is due to the amplitude change
DK in relation (15) is estimated as follows. The nor-
malized interference without excitation is expressed from
Eq. (3) by

F0svd ­ 2 1 2 cos vT . (A1)

This function has a peak or a valley at v ­ v0 when

dF0svdydvjv­v0 ­ 0 . (A2)

The normalized interference with excitation is expressed,
from Eq. (10), by

Fexsvd ­ 1 1 exps22DKd 1 2 exps2DKdcossvT 2 DFd ,
(A3)

where DF is a true phase shift. The measured phase
shift DFm satisfies the following equation:

dFexsvdydv ­ 0 at vT ­ v0T 1 DFm , (A4)

which leads to

dDKydvfexps2DKd 1 cossv0T 1 DFm 2 DFdg

1 sT 2 dDFydvdsinsv0T 1 DFm 2 DFd ­ 0 . (A5)

If jDF 2 DFmj ,, 1, systematic errors are given, from
Eq. (A5), by relation (15):
DF 2 DFm ,
f1 6 exps2DKdgdDKydv

T 2 dDFydv
,

where 1 and 2 correspond to the cases in which F0svd
has a peak and a valley at v ­ v0, respectively.

APPENDIX B
The procedure for deriving averaged phase shifts, shown
in Figs. 7 and 12, is as follows. Equations (9) and (10)
are composed of three terms that are proportional to
expsivtd at t ­ 0, 6T. If

F 21fEpr
0sv, tdg ­ Epr

0stdexpf2Dkst 1 td 1 iDfst 1 tdg ,
(B1)

where Dkstd and Dfstd are proportional to the imagi-
nary and the real parts of the time-dependent complex
refractive-index change, respectively, then the inverse FT
of the exps2ivT d term in Eq. (9) is given by

V std ; F 21fEpr
0psvdexps2ivT dEpr

0svdg

­ Epr
0pst 2 T d ≠ Epr

0std . (B2)

Similarly, the inverse FT of the exps2ivT d term in
Eq. (10) is given by

V st, td ; F 21hEpr
0psvdexps2ivT dEpr

0svd

3 expf2DKsv, td 1 iDFsv, tdgj

­ Epr
0pst 2 T d ≠ hEpr

0stdexpf2Dkst 1 td

1 iDfst 1 tdgj

­ V stdexpfGst, td 1 iCst, tdg , (B3)

where both Gst, td and Cst, td are real functions. The
average changes are obtained by substitution of t ­ T
into Eq. (B3) as

DKstd ­ GsT , td ,

DFstd ­ CsT , td ,

DTyT std ­ fjV sT , tdj2 2 jV sT dj2gyjV sT dj2

­ expf2GsT , tdg 2 1 . (B4)

DFstd in Eqs. (B4) is used for plotting the delay-time
dependence of the phase change. This corresponds to the
signal obtained by conventional interferometers without
a spectrometer as follows: If Dk ,, 1 and Df ,, 1 in
Eq. (B3), then

V st, td , V std 1 V stdGst, td 1 iV stdCst, td , (B5)

where

V stdGst, td ­ 2Epr
0pst 2 T d ≠ fEpr

0stdDkst 1 tdg ,

V stdCst, td ­ Epr
0pst 2 T d ≠ fEpr

0stdDfst 1 tdg

­
Z

dt0Epr
0pst 2 T 2 t0 dEpr

0st0 dDfst0 1 td .

(B6)

If Epr
0std is an even function, then

DFstd ­ CsT , td

­
Z

dt0Epr
0ps2t0 dEpr

0st0 dDfst0 1 tdyV sT d

­
Z

dtjEpr
0stdj2Dfst 1 td

¡Z
dtjEpr

0stdj2 . (B7)
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This is exactly the same signal as that obtained by con-
ventional interferometers.

APPENDIX C
Equation (17) is deduced by solution of the optical Bloch
equations in a two-level system in the presence of the
pump and the probe fields. The third-order perturbation
approximation (first order in the probe field and second
order in the pump field) yields the level-population, the
pump-polarization-coupling, and the PFID terms.29 The
level-population term is expressed by

P s3dstd ­ x s3dstd ≠ Eprstd ­ 2mf2std ≠ fEprstdN s2dstdg , (C1)

where N s2dstd is the population difference change:

N s2dstd ­ f1std ≠ fEexstdP s1dp
ex std 2 Eex

pstdP s1d
ex stdgy2m ; (C2)

Eexstd and Eprstd are pump and probe fields, given by

Eprstd ­ E1stdexpsivprtd ,

Eexstd ­ E2st 1 tdexpfivexst 1 tdg ; (C3)

P s1d
ex,prstd are pump- and probe-induced polarizations:

P s1d
ex,prstd ­ 2mN0f2std ≠ Eex,prstd ; (C4)

and f1std and f2std are population- and polarization-
response functions:

f1std ­ ismy"dustdexps2tyT1d ,

f2std ­ 2siy2dsmy"dustdexpfsiV 2 1yT2dtg . (C5)

In Eqs. (C1)–(C5) vex and vpr are pump and probe angu-
lar frequencies, m is the transition dipole moment, N0 is
the equilibrated population difference, T1 and T2 are the
energy and phase relaxation times, V is the transition
frequency, and ustd is a normalized step function:

ustd ­

(
1 t . 0
0 t , 0

. (C6)

It is assumed that the pulses are transform limited and
have a hyperbolic-secant envelope:

E1,2std ­ sechf2 lns1 1
p

2dtytpr,exg , (C7)

where tpr,ex are the FWHM’s of the probe and the pump
intensity profiles Ipr,exstd ­ E1,2

2std. From Eqs. (C4) and
(C1) we obtain Eqs. (16) and (17):

x s1dsvd ­ F fP s1d
pr stdgyEprsvd ­ 2mN0f2svd ,

x s3dsv, td ­ F fP s3dstdgyEprsvd

­ 2mf2svdF fEprstdN s2dstdgyEprsvd .

APPENDIX D
The difference between the present method and con-
ventional time-resolved optical Kerr measurements is
described below. The third-order susceptibility is a
function of three independent frequencies, x s3dsv1, v2,
v3d. The conventional Kerr measurements give a signal
Sstd as a function of t, the time delay between pump and
probe pulses with the same central frequency v1. Thus
Sstd is related to the FT of x s3dsv1, Dv, v1d as a function
of one variable Dv, where Dv ­ v2 2 v1 is the difference
frequency within the pump bandwidth. Femtosecond
phase spectroscopy applied to nonresonant Kerr materi-
als gives Ssv1, t, vd or x s3dsv1, Dv, vd as a function of
two variables, Dv and v, where v is the probe frequency.
Ssv1, t, vd shows the dispersion (as a function of v) of
Raman-excited molecules with various (as a function of t)
vibrational displacements or orientational arrangements.

APPENDIX E
In Fig. 16 the K–K relations hold rigorously because both
DTS’s and DPS’s are limited by a finite value to satisfy
Dxsvd ! 0svdd with d % 0 as jvj ! `. This is proved
as follows. Since the probe field Estd is a single-sided
exponential expressed as

Estd ­ ustdexps2Ctd ,

Esvd ­ F fEstdg ­ 1ysiv 1 Cd , (E1)

then the polarization change DP std is zero for t , 0, from
Eq. (26). The susceptibility change is expressed as

Dxsvd ­
Z `

0
dt exps2ivtdDP stdyEsvd

­
Z `

0
dtsiv 1 Cdexps2ivtdDP std

­ Gsvd 1 CDP svd , (E2)

where DP svd ­ F fDP stdg and

jGsvdj ­

É Z `

0
dtsivdexps2ivtdDP std

É
% jDPmaxf2exps2ivtdg`

0 j % j2DPmaxj . (E3)

Thus, Dxsvd does not diverge but is limited below a finite
value.

Condition C (Subsection 4.E) is the exception for which
the weak-probe condition is not necessary. For ex-
ample, the K–K relations hold for a single-sided expo-
nential pulse Estd to any order of nonlinearity because,
even for DP std including Enstd for any large n, DP std is
zero for t , 0 and Dxsvd is limited by a finite value,
as is known from Eq. (E2) and relations (E3). This is
generally true for any pulse that satisfies condition C as
follows: The pulse field satisfying condition C can be
expressed as Estd ­ ustdf std, where ustd is a step func-
tion and f std is an arbitrary even function that falls
off to zero as t ! `. Then Esvd ­ usvd ≠ f svd, where
usvd ­ limd!10

R`

0 dt exps2ivt 2 dtd ­ 2iyv. There-
fore Esvd falls off more slowly than 1yv as jvj ! `, so
that the discussion for Eq. (E2) and relation (E3) is valid
for any pulse field that satisfies condition C. From this,
the additional condition required for C is only that 1yEsvd
not have poles in the lower half-plane for jvj , `. For
example, a rectangular pulse field, defined by
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Estd ­

(
1 0 , t , T
0 t , 0, t . T

, (E4)

has a spectrum Esvd ­ ifexps2ivT d 2 1gyv. Since
1yEsvd has poles at v ­ 2mpyT (m is an integer) on
the real v axis, this pulse does not satisfy the additional
condition.
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