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We measure difference phase spectra (DPS) over the whole visible spectrum by frequency-domain interferome-
try (FDI), using chirped femtosecond continuum pulses. The effects of the probe-pulse chirp on time-resolved
dispersion relations are studied. Because of the correspondence between time and frequency in the chirp,
temporal evolution of the optical Kerr response in CS2 is projected into DPS. In addition, it is found that
the chirped continuum shows unexpected frequency shifts owing to induced phase modulation even when the
continuum has a flat spectrum. The chirp character can be readily obtained from the projected traces, and
the potential application to the single-shot pulse-shape measurement by FDI is discussed. It is shown that
the delay-time-corrected spectra satisfy the Kramers–Kronig relations if the continuum has a flat spectrum
and does not have higher chirp than the linear chirp but that the distortion caused by the induced modulation
of the continuum remains unremoved in the corrected spectra.  1996 Optical Society of America
1. INTRODUCTION

We recently reported a frequency-domain interferom-
eter (FDI) for femtosecond phase spectroscopy.1 – 3 In
these studies, fundamental femtosecond pulses centered
at 620 nm were used for probing as well as for pumping,
so the spectral range of measurement was limited to be-
tween 600 and 640 nm. In this paper we proceed to the
next step, namely, a femtosecond white-light continuum
interferometer, to obtain difference phase spectra (DPS)
over the whole visible region.

When a continuum pulse is used in femtosecond
pump–probe spectroscopy a frequency chirp is introduced
into the continuum that is due to positive group-velocity
dispersion (GVD) of optical elements.4 In chirped pulses
the instantaneous frequency changes with time. This
frequency–time relation is in general not linear because
of a relative phase difference caused by higher-order
phase distortion. Such nonlinear chirp in the continuum
is difficult to eliminate completely over its whole visible
spectral range, even with a combination of negative-GVD
optical configurations.5 In femtosecond spectroscopy
with continuum pulses, therefore, understanding of time-
resolved dispersion relations probed with chirped pulses is
as important as that of relations probed with transform-
limited pulses, which were thoroughly investigated in
previous papers.2,3

The pulse chirp should have a significant influence
on transient spectroscopy. The effects of chirp on time-
resolved measurements have been investigated by several
groups.6 – 9 Palfrey and Heinz showed that, if pump and
probe pulses are chirped, the delay-time dependence of
the transmission change assumes an asymmetric shape
0740-3224/96/030496-18$06.00 
with respect to delay zero owing to the phase grating.6

More recently Foing et al. dealt with coherence effects
of the pump-pulse chirp on transient spectra.7 The
chirp is not always to be removed, but there are sev-
eral approaches to utilizing the chirp in ultrafast spec-
troscopy. A linear frequency change with time was used
in pump–probe spectroscopy for single-shot measure-
ment of decay kinetics with a multichannel spectrome-
ter without scanning-time delay.8 A four-wave mixing
experiment with chirped pulses was performed to give
a delayed signal that is produced by coherent Stokes
Raman scattering at the time delay where an instanta-
neous frequency difference matches a vibrational energy.9

In another direction of research, it was theoretically pre-
dicted that large-amplitude vibrational coherence10 and a
squeezed phonon state11 can be excited by appropriately
chirped pulses.

In the case of a chirped probe pulse in pump-probe
spectroscopy, transient spectra suffer from a wavelength-
dependent time-delay distortion, so one must perform
delay-time correction in the transient spectra to extract
true dynamics. In this case, however, the question arises
whether the corrected spectra are the same as those ob-
tained with chirp-compensated transform-limited pulses.
Previously12 we found that the spectral shift of chirped
probe pulses owing to induced phase modulation cannot
be removed even after the delay-time correction. In this
paper we study the residual distortion on corrected spec-
tra for the general case including absorptive materials
and coherent coupling effects.

In our previous paper,2,13 the breakdown of the
Kramers–Kronig (K-K) relations in time-resolved spec-
troscopy was demonstrated in the case of transform-
1996 Optical Society of America
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limited probe pulses, but the problem of whether the K-K
relations hold in the case of chirped probe pulses remains.
Although it is obvious that the uncorrected spectra do not
obey the K-K relations, it is not clear whether the cor-
rected spectra do obey them. In this paper it is revealed
that the K-K relations hold under certain conditions.

For delay-time correction to be performed, the pulse
chirp character, i.e., the relation between wavelength
and time, must be well characterized. This procedure
is usually performed by a cross-correlation technique,14

in which an appropriate nonlinear crystal and its opti-
mum alignment for a phase-matching angle at each wave-
length are required. In femtosecond phase spectroscopy,
on the other hand, the DPS for transparent Kerr materi-
als are expected to show the chirp character of the contin-
uum directly because of the simultaneous refractive-index
change on excitation over the whole spectral range of the
continuum. This will give us an easier method for chirp
measurement.12 Inasmuch as the DPS are expected to
reflect the pump-pulse temporal shape in this measure-
ment, they are also utilized for a single-shot pulse-shape
measurement. A detailed analysis is performed to de-
duce conditions of a correct pulse-shape measurement.

This paper is organized as follows. The experimental
setup is described in Section 2, followed in Section 3 by
the experimental results for CS2 and glass. Using the
results in Section 3, in Section 4 we determine the chirp
character of the continuum. In Section 5 we numerically
simulate the experimental results, using the values of
the chirp obtained in Section 4. In Section 6 we analyze
the experimental and numerical results by defining the
time resolution of a chirped pulse and discuss the applica-
tion of a chirped pulse to pulse-shape measurement. In
Section 7 we discuss the residual effect after delay-time
correction and the applicability of the K-K relations to
corrected spectra.

2. EXPERIMENT
The colliding-pulse mode-locked (CPM) laser, amplifier,
and measuring system that we used were described else-
where [Fig. 1(a) of Ref. 2, Ref. 15, and Fig. 1 of Ref. 16].
Amplified pulses of 60-fs duration, 620-nm wavelength,
10-kHz repetition rate, and 2-mJ energy are divided into
a pump and a probe. The probe is focused into an ethy-
lene glycol jet to generate a white-light continuum. The
continuum pulse is further divided through the two arms
of a Michelson interferometer for the reference and the
probe pulses. The two pulses are displaced in time by
a few hundred femtoseconds. Then they travel along a
common path and are focused into a sample. The trans-
mitted pulses are detected by a spectrometer with a mul-
tichannel photodiode array. The pump is focused into
a sample at a small angle from the reference and probe
beams after a variable-delay line. The pump is blocked
by a mechanical shutter at 10 Hz to yield difference spec-
tra with and without excitation. All the experiments are
performed with parallel pump and probe polarizations.

Three samples are studied. Two of them, CS2 and
glass, are optical Kerr media nonabsorptive in the visible
region, and one, an R63 filter, is an absorptive material.
Because of their well-known dynamics and because only
phase changes are induced in the probe for CS2 and glass,
the effect of the chirp can be unambiguously extracted
without the influence of an absorption change.

3. RESULTS

A. Interference Spectra of the Chirped Continuum
Figure 1 shows frequency-domain interference in the
spectral range from 450 to 850 nm without samples.
The reference and the probe are separated by 240, 260,
and 310 fs from top to bottom at the center wavelength of
each figure. Because a compensating glass plate is not
inserted into the reference arm, there is a path-length
difference between the probe and the reference that is
due to the beam splitter. This causes a difference in the
chirp between the two pulses to make the fringe period
of interference vary with frequency as follows:

Eprsvd ­ Esv 2 v0d ,

Eref svd ­ Esv 2 v0dexphifvT 1 Fsvdgj ,

jEprsvd 1 Eref svdj2 ­ jEsv 2 v0dj2h2 1 2 cosfvT

1 Fsvdgj , (1)

where Fsvd ­ 2nsvdvLyc, nsvd is the refractive index, L
is the geometrical path length in the beam splitter, and
c is the velocity of light. The fringe period is given by
2pyfT 1 dFsvdydvg. In the case of linear chirp, Fsvd
is proportional to sv 2 v0d2, v0 being a center frequency
of the probe.

The effect of the chirp difference on the DPS, however,
can be neglected as long as the phase shift and the fringe
shift are almost linearly related within a single period, be-
cause a phase shift is calculated as 2p (fringe shiftyfringe
period) at each period.1,2 We can satisfy this condition by

Fig. 1. Frequency-domain interference of white-light continuum
pulses without samples. The reference and the probes are dis-
placed by 240, 260, and 310 fs from top to bottom at the center
wavelength of each figure.
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Fig. 2. Time displacements T as a function of wavelength in
Fig. 1, calculated with Eq. (2). In the top figure the slope of l–t
is opposite that in the figures below because the beam splitter
is inversely inserted.

increasing T to make interference fringes fine enough, as
explained in Appendix A. Because T , 300 fs is large
enough for the effect to be neglected, the chirp difference
was not removed in the experiments.

In Fig. 2 the time displacement T between the reference
and the probe in Fig. 1 is plotted as a function of wave-
length to yield the chirp difference. The displacement T
at li was calculated as

T slid ­ 1yDn ­ 1yscyli 2 cyli11d , (2)

where li is the wavelength of ith fringe minimum in
the interference spectrum, which we normalize by the
probe spectrum to determine precisely li. This curve
represents the chirp difference between the two pulses.
The slope of the curve, dTydv, is proportional to the
GVD of the beam splitter (Appendix B). This is a simple
method for obtaining the GVD, for which a femtosecond
continuum pulses is not needed but an incoherent white-
light source is enough.17

B. Method of Data Analysis
Typical results of the FDI measurement are shown in
Figs. 3 and 4 for a sample of CS2. The excitation in-
tensity was ,5.7 mJycm2. Figures 3(a) and 4(a) show
difference transmission spectra (DTS) and probe spec-
tra with and without excitation; we took the latter by
blocking the reference beam. Figures 3(b) and 4(b) show
DPS (open circles) and normalized interference spectra
with and without excitation. The same procedure as
before1,2 was used to derive the DPS. A set of the inter-
ference spectra for deducing the DPS was obtained only
for half a second. (The signals of ,5000 laser shots were
averaged.)

The continuum spectrum fluctuates in intensity by
more than 20%. This is indicated by the normalized in-
terference spectra in Figs. 3(b) and 4(b), which show oscil-
lations with appreciable amplitude fluctuation, in marked
contrast to the case of the fundamental pulse in Fig. 4 of
Ref. 2, where the normalized interference spectra show

Fig. 3. Signals for CS2 without delay-time correction from 650
to 850 nm. (a) DTS (upper solid curve) and probe spectra
with excitation (dashed curve) and without excitation ( lower
solid curve) by the pump–probe measurement. (b) DPS (open
circles), interference spectra with (dashed curve) and without
( lower solid curve) excitation, and the difference interference
spectra between them (upper solid curve). The interference
spectra are normalized by the probe spectrum without excitation.

Fig. 4. Signals for CS2 from 520 to 720 nm. See the caption to
Fig. 3 for details.
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Fig. 5. DTS and DPS in CS2 obtained with chirped continuum
pulses from 220- to 460-fs time delays without delay-time cor-
rection. Zero delay is defined at the maximum overlap between
the pump and the probe at 620 nm.

oscillations with a constant amplitude. Because of the
intensity fluctuation as a function of both time and wave-
length, normalization does not work effectively in the
present case.

One of the reasons for this continuum fluctuation
should be the intensity fluctuations (,10%) of the funda-
mental pulse. In a copper-vapor laser for amplification
of CPM laser pulses there is a thyratron trigger jitter,
which amounts to more than 61 ns with respect to the
CPM seed pulses used for triggering a thyratron circuit,
resulting in a timing jitter between CPM seed pulses and
copper-vapor laser amplifying pulses. This is consid-
ered to be responsible for the intensity fluctuation of the
amplified fundamental pulses. Therefore, to stabilize
the thyratron trigger jitter, we equipped the copper-vapor
laser with a fast feedback circuit.18 As a result, the long-
term drift of the trigger was suppressed, which causes the
long-term instability of the amplified pulse intensity, but
the fast timing jitter could not be eliminated effectively.
This indicates that the fast timing jitter is almost random
from one pulse to another such that negative feedback
does not work effectively.

In the FDI measurements with continuum pulses we
take advantage of the high repetition rate of the amplifi-
cation system. In contrast, a low-repetition-rate ampli-
fier such as a Q-switched YAG amplifier system19 yields
continuum pulses of much more instability. In this case
the use of a continuum interferometer may be difficult
unless a reference interferometer20 is employed.

C. Transparent Materials: CS2 and Glass
First we measured the optical Kerr response in transpar-
ent liquid CS2 in a 1-mm cell. Figure 5 displays DTS and
DPS at several time delays without delay-time correction,
where zero delay means the time of the maximum overlap
between the pump and the probe at 620 nm.21 Because
the continuum is positively chirped after passing through
optical elements of ,11-mm total thickness, the red edge
of the probe arrives earlier at the sample than the blue
edge such that the decrease in wavelength corresponds to
the increase in time delay. Hence the DPS does not grow
instantaneously over the whole spectral region but shows
a characteristic shape that reflects the temporal evolu-
tion of the Kerr response in CS2: the instantaneous elec-
tronic response and the subsequent nuclear response22 – 25

with decreasing wavelength, i.e., with increasing time
delay. This is a projection of the temporal Kerr dynam-
ics into the frequency domain that is due to the one-to-
one correspondence between frequency and time in the
chirped continuum. Note also that the DTS are not zero
but show an appreciable oscillatory structure. As time
delay is increased from 220 to 460 fs, the DPS and DTS
signals move together toward longer wavelength. As is
shown in Section 5 below, the DTS signals are spectral
shifts of the continuum that are due to induced phase
modulation26 – 28 (IPM); rise and decay in the DPS with
decreasing wavelength, i.e., with increasing time delay,
are accompanied by red and blue shifts, respectively, of
the probe frequency.

The width of the DPS in Fig. 5 broadens as it moves
from blue to red. This is partly because the horizontal
axis is not frequency linear but wavelength linear. In ad-
dition, this indicates that the blue portion of the probe has
larger temporal broadening than the red portion because
of nonlinear chirp caused by the positive third derivative
of the refractive index with respect to the frequency.

At 460 fs the DPS show a positive phase change at
wavelengths shorter than 680 nm. This signal is at-
tributed to a negative phase change in the reference pulse
because the pump pulse catches up the reference in the
shorter-wavelength region when the delay is increased.
Temporal broadening of the continuum between 650 and
850 nm (more than 400 fs, as shown in Fig. 7 below) is
larger than the reference and probe separation (310 fs at
750 nm), so that the phase changes in both pulses are
simultaneously observed between 650 and 850 nm.

Because CS2 has large nonlinearity, signals are ob-
tained with a high signal-to-noise ratio. However, extra
chirp is inevitably introduced because of the front plate of
the cell and the large GVD in CS2 itself (4.5 times larger
than that of BK7 glass at 620 nm).4 To make a compar-
ison among the different chirp conditions we performed
a further measurement, using a 1-mm-thick slide glass
plate under a smaller chirp condition, which we obtained
by reversing the beam splitter and replacing the CS2 cell
with a glass plate. Figure 6 shows DTS and DPS for
glass at several time delays. As glass has only an instan-
taneous electronic response, the DPS reflect the temporal
profile of the pump pulse. The oscillatory structures are
also seen in the DTS.

4. CHARACTERIZATION OF
THE PULSE CHIRP
For a quantitative discussion in the following sections,
the frequency chirp of the continuum must be well char-
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Fig. 6. DTS and DPS in the glass obtained by chirped contin-
uum pulses from 140- to 180-fs time delays without delay-time
correction. Zero delay is defined at the maximum overlap be-
tween the pump and the probe at 620 nm.

Fig. 7. Relation between time and frequency (the t–n curve)
of the continuum, obtained from the results in Fig. 5 by plotting
the time delays against the probe wavelengths at the peaks of
the DTS. The solid curve is the fitting function [Eq. (3)]. The
chirp parameter r is determined to be 1400 fs2 at 700 nm.

acterized. In this section we characterize the chirp of the
probe, using the results of Section 3.

To show the relation between time and frequency in the
chirped continuum, using the results for CS2 in Fig. 5, we
plotted the time delay against the peak wavelength of the
DPS. Figure 7 shows the t–n curve of the chirped con-
tinuum thus obtained. We used the peak of the DTS in-
stead of the DPS because the wavelengths of both peaks
coincide well. It is advantageous to use the DTS rather
than the DPS because a peak position is precisely deter-
mined from the DTS whereas it is not from the DPS be-
cause of the discreteness of the data. Because the DTS
exhibits a complex shape near 620 nm as shown in Fig. 4,
the spectral region near 620 nm was omitted from the
curve. The solid curve is the fitting function with three
parameters, a, b, and c (Appendix B):

tsnd ­ a 1 bn2 1 cn4 , (3)

where t is the time delay in femtoseconds and n is the fre-
quency in petahertz [PHz (­1015 Hz)]. The parameter
values are determined by a least-squares fit as a ­ 1090 6

20 (fs), b ­ 23540 6 180 (fsyPHz2), and c ­ 24460 6 350
(fsyPHz4). This curve is reasonable from the value of the
GVD of 11-mm optical elements, through which the probe
transmits, consisting of the ethylene glycol jet, a 4.2-mm
focusing lens, three times the 1-mm beam splitter at 45±

incidence angle, the front plate of the 1-mm cell (1 mm),
and CS2 itself. The data are also fitted by the fitting
function with two parameters, a and b:

tsnd ­ a 1 bn2 , (4)

with a ­ 1370 6 10 (fs) and b ­ 25870 6 40 (fsyPHz2),
but the fit is not so good as that by Eq. (3) at higher
frequencies. The goodness of fit is estimated by x2 as
x2 ­ 15, 860 fs2 for Eq. (3) and x2 ­ 54, 770 fs2 for Eq. (4),
where x2 is the sum of the squared deviations of the data
(70 data) from the fitting function.

The t–n curve from the results for the glass in Fig. 6 is
shown in Fig. 8, where we again used the DTS instead of
the DPS. The solid curve is the fitting function [Eq. (3)]
with a ­ 670 6 30 (fs), b ­ 22850 6 210 (fsyPHz2), c ­
2300 6 400 (fsyPHz4), and x2 ­ 9230 (fs2). This curve
agrees with the experimental condition of 7-mm thickness
of all optical elements consisting of the ethylene glycol
jet, the 4.2-mm focusing lens, the 1-mm beam splitter at
45± incidence angle, and the 1-mm slide glass. Fitting
by Eq. (4) with a ­ 690 6 10 (fs) and b ­ 23030 6 30
(fsyPHz2) gives x2 ­ 9380 fs2 (45 data), and hence Eq. (4)
gives as good a fit as Eq. (3), in contrast to the case of
Fig. 7. This difference is attributed to larger GVD in CS2

Fig. 8. Relation between time and frequency (the t–n curve) of
the continuum, obtained from the results in Fig. 6 by plotting
the time delays against the probe wavelengths at the peaks of
the DTS. The solid curve is the fitting function [Eq. (3)]. The
chirp parameter r is determined to be 800 fs2 at 700 nm.
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Fig. 9. DPS near the peak wavelength (620 nm) of the contin-
uum. DTS and probe spectra in this spectral range are shown
in Fig. 4.

than in the glass, which becomes significant at higher
frequencies, as indicated by a much larger value of c in
Fig. 7 than in Fig. 8.

Here we must mention that the chirp characterization
by this method has one drawback, i.e., one cannot obtain
a reliable value for the peak position of the DTS around
the fundamental wavelength 620 nm because of compli-
cated structures in DTS and DPS as shown in Fig. 4. To
show this more closely, we have illustrated in Figs. 7 and
8 that the experimental data (open circles) deviate from
the fitting curves as they approach 620 nm. At first,
this deviation may be considered to be due to self-phase
modulation26 (SPM) in the continuum generation process.
That is, it is known that the t–n curve of a continuum ex-
hibits a dispersion-type shape as a function of frequency
around the fundamental wavelength (620 nm).14,15 This
is caused by SPM, through which the pulse’s leading
edge (negative time) is red shifted and its trailing edge
(positive time) is blue shifted with the result that the
chirp in the fundamental wavelength region shows a char-
acteristic feature. However, the sign of the deviation in
Figs. 7 and 8 is opposite that expected in this process, so
there must be another cause to be considered.

Figure 9 shows DPS for CS2 near 620 nm and zero de-
lay. With increasing time delay the DPS peak moves
continuously toward longer wavelengths but makes a dis-
crete transition from 600 to 640 nm in such a way that
the peak fades out near 600 nm while another peak grows
near 640 nm. This behavior is related to the residual
sharp peak of the fundamental pulse in the continuum
spectrum in Fig. 4: in the case of the fundamental pulse
without chirp, the DPS and the DTS show the broadening
in the probe phase and spectrum, respectively, as shown
at zero delay in Fig. 11 of Ref. 2. Similarly, the DPS in
Fig. 9 show the spectral broadening with respect to the
peak wavelength 620 nm, but here the broadening does
not extend over the whole wavelength but is limited be-
tween 600 and 640 nm (the residual peak region) because
the pulse is chirped and its spectrum has a sizable ampli-
tude even outside the peak region. If the DPS peak in
Fig. 9 is plotted against time delay, the deviation in the
t–n curve as shown in Figs. 7 and 8 is obtained. It is
therefore concluded that the residual sharp peak in the
continuum is responsible for the deviation.

5. SIMULATIONS
To show that the DTS signals are caused by IPM and how
temporal response is projected into the frequency domain,
we simulate the experimental results by numerical calcu-
lations, using the chirp characters obtained in Section 4.

The procedure of the numerical calculation is the same
as in Eqs. (21) of Ref. 2, except that linear chirp is in-
cluded in the probe as

Eprsvd ­ Esv 2 v0dexpf2irsv 2 v0d2y4g , (5)

where Esvd is assumed to be a hyperbolic-secant func-
tion and r is a linear chirp parameter. The time profile
of the unperturbed probe obtained by the inverse Fourier
transform of Eq. (5) with zero center frequency v0 is pro-
vided with a time-dependent phase change Dfstd and then
Fourier transformed into the frequency domain to yield
the DTS and the DPS. According to the probe spectrum
in Fig. 3(a) the spectral width of the probe is assumed to
be that of a 6-fs pulse [the full width at half-maximum
(FWHM) of the intensity]. From the slope of the chirp
curve [see Eq. (B10) below], r at 700 nm is determined to
be 1400 fs2 for CS2 and 800 fs2 for the glass.

The time response Dfstd is assumed to be the same as
Eq. (20) of Ref. 2:

Dfstd ­ aI std 1 bustdexps2tytddf1 2 exps2tytrdg , (6)

except that the nuclear-to-electronic-response ratio bya is
taken as 0.8 and the FWHM of the pump-pulse intensity
is taken as 60 fs. The ratio bya is greater than that in
the preceding paper2 (0.36) because the coherent coupling
effect is negligibly small here owing to the large detuning
between the pump and the probe frequencies. In Eq. (6)
the approximation of the fixed probe frequency, Df ~

vDn , v0Dn, where Dn is the refractive-index change,
is used, although the probe frequency changes with time.
The appropriateness of this approximation is discussed in
Appendix C.

Figure 10 shows the results for CS2 with r ­ 1400 fs2,
where the characteristic features of the experimental re-
sults shown in Fig. 5 are well reproduced: the DTS and
the DPS travel from the shorter to the longer wave-
lengths with increasing time delay, preserving the rela-
tion between the DTS and the DPS throughout the delay.
Hence it is concluded that the DTS signals are spectral
shifts of the continuum owing to IPM26 – 28; rise and decay
in the DPS with decreasing wavelength, i.e., with increas-
ing time delay, are accompanied by red and blue shifts,
respectively, of the probe frequency. Because the peaks
in the DTS and the DPS almost coincide in Fig. 10, the
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Fig. 10. Numerical simulations for the results for CS2 in Fig. 5
with Eq. (6) and the chirp parameter r ­ 1400 fs2: The probe
spectrum, the DTS, and the DPS (dashed curves) are at 2120-,
0-, and 120-fs time delays. The calibrated time is scaled on the
top horizontal line.

use of the DTS instead of the DPS for chirp characteriza-
tion in Section 4 is justified theoretically.

The reason for the deviation of the t–n curve near
620 nm can be explained also in terms of frequency shifts
in the sloped region of the probe spectrum. On the left
slope of the 620-nm probe peak, red and blue shifts are
distorted by the slope such that the DTS peak is shifted
to the shorter wavelength slightly, and vice versa on the
right slope of the peak, resulting in the deviation of the
t–n curve as observed.

In Fig. 10 the FWHM of the initial electronic re-
sponse is 114 fs, showing 1.9 times broadening from the
60-fs pump width. Precise comparison by subtraction
of the nuclear response term gives 1.6 times broadening
of the electronic response term from 60 fs. Note also
that the shape of the DTS varies slightly with time delay,
because it is affected by the probe spectral shape.

Figure 11 shows the results for the glass with r ­
800 fs2 and

Dfstd ­ aI std . (7)

The pump-pulse durations (FWHM) are 120, 60, and
30 fs in Figs. 11(a), 11(b), and 11(c), respectively.
Figure 11(b) reproduces well the experimental results
in Fig. 6, whereas in Fig. 11(c) the signal distortion
is so large that the DPS do not reflect the temporal
response. Broadening factors, a ratio of (measured
pulse width)y (true pulse width), are 1.04 and 1.29
in Figs. 11(a) and 11(b), respectively. Note also that
the peak phase change decreases from Fig. 11(a) to
Fig. 11(c) with pump-pulse width, although the same
peak phase change at t ­ 0 is assumed for all figures
[Dfs0d ­ 20.1 rad].

The above simulations were performed with the as-
sumptions of large detuning and negligible coherent
coupling effect,28 which are appropriate for the present
experiments on glass and CS2. In this case the oscilla-
tions are caused by induced amplitude and phase modu-
lations of the probe.28 They disappear in the limit of a
d function probe, whereas the oscillations that are due to
the coherent coupling between the pump and the probe
appear for negative time delays up to the phase relaxation
time, even with a d-function probe.29 – 32

6. TIME RESOLUTION OF A CHIRPED
PULSE IN TRANSIENT SPECTROSCOPY
The modulation spectra in both DTS and DPS in Figs. 10
and 11 vary depending on the probe pulse chirp and on
the pump pulse width. The modulation effect distorts
transient spectra; to see this effect more closely and how
it affects the time resolution in transient spectroscopy, we
define an effective pulse width of a chirped pulse in what
follows.

A. Effective Pulse Width of a Chirped Pulse
A chirped probe pulse is formulated as follows. The spec-
trum of the probe field with a Gaussian envelope and a

Fig. 11. Numerical simulations for the glass with Eq. (7)
and the peak phase change Dfs0d ­ 20.1 and the chirp
parameter r ­ 800 fs2. The probe spectrum, the DTS, and
the DPS (dashed curves) are at 0-fs delay. The pump-pulse
widths (FWHM) are 120, 60, and 30 fs such that (a) r , te

2,
(b) r , te

2, (c) r . te
2. The calibrated time is scaled on the

top horizontal line. In (b) the experimental results in Fig. 6
are reproduced. In (c) the peak of the negative phase change
is reduced by a positive dip at 700 nm, and for shorter te the
dip grows such that the DPS has two peaks as shown in Fig. 9
or in relation (36).
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linear chirp is expressed by

Esvd ­ E0p1/2 exps2tc
2v2y4 2 ipv2y4d , (8)

where tc is the coherence time of the probe, i.e., 2ytc

is the half-width at the 1ye maximum (1ye width) of
the probe-field spectrum (in what follows, the 1ye width
always denotes the half-width, not the full width), and
the pulse center frequency is taken as zero without loss of
generality. Through an inverse Fourier transform (FT)
of Eq. (8), the temporal dependence of the pulse field is
given by

Estd ­ F 21fEsvdg ­ E0se 2 igd1/2 expf2se 2 igdt2g , (9)

where

e ­ tc
2ystc

4 1 r2d , (10)

g ­ rystc
4 1 r2d . (11)

Equation (9) shows that the instantaneous frequency
changes with t such that

v ­ dfydt ­ 2gt . (12)

Suppose that the probe pulse experiences a small phase
change Dfstd, which follows a Gaussian pump-intensity
profile with 1ye width te as

Dfst, td ­ d expf2st 2 td2yte
2g, jdj ,, 1 , (13)

where d is a constant, te is the 1ye width of the pump-
intensity profile, and t is the relative delay time between
the pump and the probe. In Eq. (13) the approximation
of Df ~ vI , v0I is used as well as in Eqs. (6) and (7),
so the following results are valid for the conditions in
Appendix C. When d is small we obtain

EstdexpfiDfst, tdg , Estdh1 1 id expf2st 2 td2yte
2gj .

(14)

The FT of the right-hand side of relation (14) is

F fEstd 1 iEstdDfst, tdg ­ Esvd 1 iDEsv, td ,

DEsv, td ­
dE0p1/2se 2 igd1/2

s1yte
2 1 e 2 igd1/2

3 exp

"
s2tyte

2 2 ivd2

4s1yte
2 1 e 2 igd

2
t2

te
2

#
.

(15)

DEsv, tdyEsvd ­
dse 2 igd1/2

s1yte
2 1 e 2 igd1/2

3 exp

"
s2tyte

2 2 ivd2

4s1yte
2 1 e 2 igd

2
t2

te
2

1
tc

2v2

4
1

irv2

4

#
; A expfBsv, tdg . (16)

Then DF and DTyT can be expressed by the real and the
imaginary parts of DEyE as follows:

DTyT svd ­ jfEsvd 1 iDEsvdgyEsvdj2 2 1

, 22 ImfDEsvdyEsvdg , (17)

DFsvd ­ arctan

"
Im Esvd 1 Re DEsvd
Re Esvd 2 Im DEsvd

#

2 arctan

"
Im Esvd
Re Esvd

#
, RefDEsvdyEsvdg . (18)

Setting v ­ 0 in Eq. (16) yields the delay-time depen-
dence of DEyE as

DEsv ­ 0, tdyEsvd ­ A expfBsv ­ 0, tdg

­
dse 2 igd1/2

s1yte
2 1 e 2 igd1/2

3 exp

√
t2yte

4

1yte
2 1 e 2 ig

2
t2

te
2

!

­ d
te

T
exp

√
2

t2

T 2

!
, (19)

where

T ­ te

241 1 se0 1 ig0d

√
teff

te

!2
351/2

, (20)

with

teff
2 ­

p
tc

4 1 r2 , (21)

e0 ­ tc
2ystc

4 1 r2d1/2, g0 ­ rystc
4 1 r2d1/2, and e02 1

g02 ­ 1. Here the effective pulse width teff is defined
in Eq. (21).

For reference, by the conventional optical Kerr-shutter
pulse-width measurement the signal is given by the third-
order correlation function f std ­

R
dtIexst 2 tdIpr

2std for a
signal pulse Iex and an intense probe pulse Ipr .33 The
measured signal width is readily obtained for a Gaussian
pulse as

T ­ tex

0@1 1
tpr

2

2tex
2

1A1/2

, (22)

where tex and tpr are the 1ye widths of the signal- and
the probe-pulse intensities, respectively. Equation (22)
shows that the time resolution is given by tpry

p
2, where

time resolution is defined by the width in the limit of
tex ! 0. The factor 1y

p
2 arises from the signal pulse’s

being probed by Ipr
2.

By analogy with Eq. (22), Eq. (20) shows that teff de-
fines the time resolution of the chirped pulse, but this is
an extended definition of time resolution because Eq. (20)
shows that teff affects both real and imaginary parts
of the signal owing to e0 1 ig0. The effect on DFstd
and DTyT std is shown in Appendix D, where DFstd and
DTyT std show behavior similar to that in Fig. 11 as a
function of t.
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The effective pulse width, teff , satisfies the conditions

sAd teff ,
p

r, tc
2 ,, r , (23)

sBd teff , tc, tc
2 .. r . (24)

If we regard a chirped pulse as a train of FT limited
pulses with effective pulse widths and different center
frequencies, condition (A) is deduced intuitively as follows:
When tc

2 ,, r, from Eq. (12)

Dv ­ 2gDt , 2Dtyr (25)

and, for transform-limited pulses,

DvDt ­ s , (26)

where s ­ 2 for the 1ye width of a Gaussian pulse field.
Simultaneously solving relations (25) and (26), we obtain
the effective width for tc

2 ,, r as

teff ­ Dt ,
p

r . (27)

Note also that the following conditions hold:

sCd teff , 1y
p

e , (28)

sDd 1yteff , 1ytc . (29)

This is, the effective pulse is temporally shorter [condi-
tion (C)] and spectrally narrower [condition (D)] than the
chirped pulse. Equations (8) and (9) are rewritten, with
teff , as

Esvd ­ E0p1/2 expf2se0 2 ig0dteff
2v2y4g , (30)

Estd ­ E0se 2 igd1/2 expf2se0 2 ig0dt2yteff
2g , (31)

with e02 1 g02 ­ 1.

B. First-Order Effect of Chirp
The modulation effect depends on the relation among tc

2,
te

2, and r. Oscillation is clearly seen in Fig. 11(c), where
tc

2 ,, te
2 , jrj, whereas there are red and blue shifts

rather than oscillation in Figs. 11(a) and 11(b), where
tc

2 ,, jrj ,, te
2. We therefore study these two cases

separately, using Eq. (16).
For simplicity, we take t ­ 0 in Eq. (16). Then, using

Eq. (12), we find that

f svd ; DEsv, t ­ 0dyEsvdd

­
se 2 igd1/2

s1yte
2 1 e 2 igd1/2

exp

"
2v2

4s1yte
2 1 e 2 igd

1 tc
2v2y4 1 irv2y4

#

­
te

T
exp

"
se0 1 ig0d2g02 t2

T 2

#
; gstd . (32)

Equation (32) is more complicated than Eq. (19) because
the v dependence of the probe spectrum causes the addi-
tional distortion in Eq. (32), whereas in Eq. (19) the phase
change is probed at v ­ 0, the center frequency of the
probe.

First, the case of tc
2 ,, jrj ,, te

2 is studied. If we
expand gstd, keeping the first-order terms of tc

2yr and
ryte

2 such as e0 , tc
2yr, g0 , 1, g , 1yr, and teff

2 , r,
then from relations (17) and (18) we obtain

DTyT svd , 22 Imfdgstdg

, 2d exps2t2yte
2dfrys2te

2d

2 s2tc
2yr 1 ryte

2dt2yte
2g , (33)

DFsvd , Refdgstdg

, d exps2t2yte
2d ­ Dfstd . (34)

Relation (34) shows that the pump-pulse shape is pro-
jected onto the frequency axis without any distortion
within the above approximation. Relation (33) shows
that the spectral shift in the DTS is the first-order effect.
If the second-order effect is taken into account, the pro-
jected DF trace suffers from distortion, as is discussed
in more detail in Subsection 6.C. The features of the
red and blue shifts observed in the DTS in Fig. 6 are
expressed by relation (33) because tc

2 ,, jP j , te
2 is sat-

isfied in the experiment as P ­ 300 fs2 and te ­ 36 fs
(1ye width for a 60-fs FWHM Gaussian pulse).

The second case is tc
2 ,, te

2 ,, jrj. Similarly to the
first case, expanding gstd to first order such as e0 , 0 and
r0 , 1 and using the relation v ­ 2gt , 2tyr, we obtain
for positive chirp sr . 0d

DTyT1svd , 2dtes2rd21/2 exps2te
2v2y4dhf1 2 te

2ys2rdg

3 cossrv2y4d 2 f1 1 te
2ys2rdgsinsrv2y4dj ,

(35)

DF1svd , dtes2rd21/2 exps2te
2v2y4dhf1 1 te

2ys2rdg

3 cossrv2y4d 1 f1 2 te
2ys2rdgsinsrv2y4dj

(36)

and for negative chirp sr , 0d

DTyT2svd , 22dtes22rd21/2 exps2te
2v2y4d

3 hf1 1 te
2ys2rdgcossrv2y4d 1 f1 2 te

2ys2rdg

3 sinsrv2y4dj

­ 2DTyT1svd , (37)

DF2svd , dtes22rd21/2 exps2te
2v2y4dhf1 2 te

2ys2rdg

3 cossrv2y4d 2 f1 1 te
2ys2rdgsinsrv2y4dj

­ DF1svd . (38)

The DTS and the DPS in Fig. 11(c) are approximately ex-
pressed by relations (35) and (36) because the conditions
tc

2 ,, te
2 , jrj are satisfied.

It should be noted that frequency shifts that are due
to IPM are observed even when the probe spectrum is
flat; the shifts depend not only on the spectral shape28

but also on the chirp. When the continuum has a flat
spectrum stc ­ 0d and has no chirp sr ­ 0d, no signal ap-
pears in the DTS sDTyT ­ 0d, as is readily derived from
Eq. (32). This is because all the frequency components
of the probe have the largest amplitude at the same time
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Table 1. Various Pulse Widths for Gaussian Pulses

FWHM of Half 1ye Intensity Width Half 1ye Field Width
Intensity t0 (fs) t0y2

p
ln 2 (fs) t0y

p
2 ln 2 (fs)

30 18 25
60 36 51

120 72 102

such that the spectral change caused by the frequency
shift of any component is canceled by the spectral change
of its neighboring components. When the continuum is
chirped, on the other hand, frequency and time are re-
lated linearly through Dv ­ 2gDt such that the frequency
shift of one component interferes with its neighboring
components to show frequency-domain interference as in
relations (35)–(38).

In Figs. 11(a), 11(b), and 11(c), teff , te, teff , te, and
teff . te, respectively, are satisfied, because teff , p

r ­
p

800 ­ 28 fs and te ­ 72, 36, 18 fs, respectively, as listed
in Table 1. The amplitude of the oscillation increases
with decreasing te, demonstrating that the pulse modu-
lation effects such as IPM are substantial when te is
shorter than teff . Because each effective pulse experi-
ences a refractive-index change at a different time delay,
the oscillation period is not constant but varies with wave-
length, as Figs. 10 and 11 show. The reduction in the
peak phase change from Figs. 11(a) to Fig. 11(c) is also
explained in terms of the effective width; the time reso-
lution of the chirped pulse is determined by teff , so not
an instantaneous phase shift but an averaged phase shift
over teff is detected when teff . te.

Note that the features of the DPS and the DTS in
Figs. 4 and 9 are qualitatively reproduced in Fig. 11(c),
where the peak of the negative phase change is reduced by
a positive dip at 700 nm. For shorter te than in Fig. 11(c)
the dip grows such that the DPS has two peaks as shown
in Fig. 9 or in relation (36). This is because the condition
that teff . te in Fig. 11(c) is satisfied also in Figs. 4 and 9
if the residual peak is regarded as the fundamental pulse
(tc ­ 51 fs and te ­ 36 fs, from Table 1).

The linear chirp parameter r ­ 800 fs2 in Fig. 6 gives
teff , p

r ­ 28 fs2 (the effective 1ye field width for a
Gaussian). This is comparable with the pump–pulse
width (60-fs FWHM, corresponding to 36-fs 1ye inten-
sity width for a Gaussian), so the DTS show apprecia-
ble shifts both in Fig. 6 and in Fig. 11(b). However, note
that the time resolution is improved by continuum gen-
eration compared with teff ­ 51 fs (1ye field width for a
Gaussian) of the 60-fs FWHM fundamental probe pulse
before continuum generation. If a thinner focusing lens
(for example, 2 mm) is used and the beam splitter is re-
moved in the ordinary pump–probe measurement, the
chirp can be readily reduced to 400 fs2 and teff to 20 fs
(24-fs FWHM of intensity). That is, the effective pulse
width of the continuum is shorter than the fundamental
pulse width unless unnecessarily thick optical elements
are used in the path after continuum generation.34 This
fact partly explains why transient oscillations at positive
delays28 owing to pulse modulation effects were not re-
ported previously.29 – 32 DTS are usually measured with
a continuum, not with a fundamental, so the modula-
tion effects are reduced because of the shorter effective
pulse width.

C. Second-Order Effect of Chirp: Pulse-Shape
Measurement with a Chirped Pulse
In this subsection the second-order effect of the chirp is
studied, and a possible application to the single-shot pulse
shape measurement is also discussed.

The argument in the exponential in Eq. (16) is that

Bsvd ­

√
2

1 1 ete
2 2 tc

2te
2L

4te
2L

v2 1
gt

te
2L

v

!

1 i

24√
r

4
2

g

4L

!
v2 2

√
1

te
2 1 e

!
t

te
2L

v

35 1 C ,

(39)

where C is a constant and L ­ s1yte
2 1 ed2 1 g2. When

tc ­ 0, both real (first term) and imaginary (second term)
parts of Bsvd can be factorized by sv 2 2gtd2. Using
Eq. (12), we can express Eq. (39) as a function of t such
that Bstd ­ P st 2 td2 1 Q, where P and Q are appropriate
constants. Otherwise stc fi 0d the position of the signal is
distorted. This is illustrated in Fig. 10, where the peak
positions of the DTS and DPS are slightly shifted.

In the case of tc
2 ,, jrj ,, te

2 we take t ­ 0 for sim-
plicity and expand the function gstd ­ A expfBs22gtdgyd

to second order as in Appendix E to obtain

Re gstd , exps2t2yT 2 2 d1
2d , (40)

Im gstd , exps2t2yte
2dsd4t2yte

2 2 d2d , (41)

where T 2 ­ te
2f1 1 d3

2 1 d2d4 2 sd4
2y2dt2yte

2g, with d124

given in Appendix E. Because DFsvd , d Regstd and
DTyT svd , 22d Imgstd, relations (40) and (41) give ap-
proximate shapes of DPS and DTS, respectively, as shown
in Fig. 11. We can see from relation (41) that spec-
tral shifts caused by IPM are the first-order distortion,
whereas from relation (40) the broadening of the pulse
width and the reduction in the peak phase change are
the second-order distortion.

The pulse width T in relation (40) is explicitly ex-
pressed by

T , te

241 1
tc

4

r2

√
3 2 2

t2

te
2

!
1

tc
2

te
2

√
4 2 2

t2

te
2

!

1
r2

te
4

√
3
2

2
1
2

t2

te
2

!35 1/2

. (42)

When t , te (the 1ye width of the pump intensity),

T , te

241 1

√
tc

2

r
1

r

te
2

!2
351/2

. (43)

We can therefore detect the pump-intensity profile under
the conditions of tc

2 ,, jrj ,, te
2. The t dependence of

relation (42) indicates that the pulse shape is distorted if
the conditions are not satisfied. It is useful to rewrite
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relation (43), using the FWHM of the Gaussian pulse in-
tensity in Table 1, as

T 0 , te
0

241 1
tc

04

r2s2 ln 2d2
s3 2 ln 2d

1
tc

02

te
02

s8 2 2 ln 2d 1
r2s4 ln 2d2

te
04

√
3
2

2
ln 2

4

!35 1/2

, te
0

241 1 1.2
tc

04

r2
1 6.6

tc
02

te
02

1 10.2
r2

te
04

35 1/2

(44)

where te
0 and tc

0 are the FWHM of the pump and the
probe intensities, respectively.

The projection of temporal response into the fre-
quency domain shown in relation (40) is applicable to the
pulse-shape measurement. Although there have been
numerous publications on pulse-width (shape, phase)
measurement,33,35 – 38 the use of a chirped pulse for this
purpose has not yet been established, to the best of
our knowledge. In part the projection method com-
pares well with the optical Kerr-shutter pulse-shape
measurement33,35 because both are third-order correla-
tion methods, but the former has the following two ad-
ditional characteristics: First, and more important, it
is a single-shot pulse-shape measurement; second, the
time resolution is greatly enhanced when the chirp is
optimized as

r ­ tcte (45)

to yield the minimum width in relation (43) as

T , te

241 1

√
2tc

te

!2
351/2

. (46)

Relation (46) indicates that, when the spectral width
of the probe is extended through SPM, without the need
of pulse compression the time resolution is given by 2tc,
twice the coherence time of the continuum. From Dt ­
rDvy2 in relation (25) with r ­ tcte in Eq. (45) and with
Dv ­ sytc ­ 2ytc in Eq. (26), it is known that the mini-
mum width is obtained when Dt ­ te, i.e., when the probe
field and the pump intensity have the same width. For r

smaller than the optimum value the probe pulse is shorter
than the pump pulse such that the DPS signal reflects a
transient spectrum at a certain delay rather than the tem-
poral pump pulse shape. For larger r the probe pulse is
longer than the pump pulse such that the effective pulse
width broadens to reduce the time resolution, resulting in
broadening of a projected width.

In the experiments with the glass, r is 800 fs2, te
0 is

60 fs, and tc
0 is reasonably taken as 6 fs ste

0y10d from the
probe spectrum in Fig. 3(a). For te

0 ­ 60 fs the pulse
width calculated from relation (44) is 1.25 te

0, in rea-
sonable agreement with both the experimental results in
Fig. 6 and the simulation in Fig. 11(b), where the broad-
ening factor T 0yte

0 is 1.29. For te
0 ­ 120 fs, relation (44)

gives 1.02, which also agrees fairly well with the simu-
lated value 1.04 in Fig. 11(a). For CS2, on the other
hand, r is nearly twice as large as that for the glass, so
the measured pulse width broadens significantly. With
r ­ 1400 fs2 the broadening factor from relation (44) is
1.48, which agrees roughly with the simulated value of
1.6 in Fig. 10, although the condition that r ,, te

2 is not
satisfied. The small disagreement between the estima-
tion from relation (44) and the simulations in Figs. 10 and
11 is due partly to the truncation of the Taylor expan-
sion for deriving relation (44) up to the second order of
tc

2yr and ryte
2 and to the first order of d in Eq. (13), due

partly to the approximation of tyte ­ 1 in relation (42)
(tyte ­ 5y6 is more appropriate for the half-maximum),
and also due partly to an assumed hyperbolic-secant en-
velope in the simulation while a Gaussian envelope is
assumed in relation (44). However, relation (44) is still
useful for estimation of broadening factors and for finding
the optimum chirp condition as in Eq. (45).

The precise measurement of the pulse shape by this
method requires a continuum of high quality in chirp,
spectral shape, and stability and a good Kerr material
with no dependence of refractive-index change on wave-
length. However, when one uses a continuum in fem-
tosecond spectroscopy this is a convenient single-shot
method for estimation of the pulse shape. For example,
owing to real-time monitoring of the pulse width, the opti-
mum negative-GVD condition for the shortest pulse width
can readily be found with a GVD compensator such as a
four-prism sequence.

7. RESIDUAL DISTORTION
AND K-K RELATIONS IN
CHIRP-CORRECTED SPECTRA

A. Absorptive Material: CdSxSe1 ---x-Doped Glass
The continuum interferometer is applicable also to
resonant materials and is expected to find a large new
area of usefulness in transient phase and absorption
spectroscopy. Figure 12 shows the results of simultane-
ous measurements of DTS and DPS for CdSxSe12x-doped
glass (Toshiba R63 filter)2 without delay-time correction.
Each spectrum was measured by accumulation for half
a second. The positive phase change extending as far
as 700 nm is clearly measured. The phase change de-
creases with wavelength not only because of the intrinsic
phase dispersion but also because of decreasing time de-
lay with wavelength. The phase change crosses the zero
line from positive to negative for longer wavelengths as
a result of the modulation effects.

As Fig. 12 shows, positive phase change rises for the
longer-wavelength side of the absorption saturation.
The rising edge of the phase change is accompanied by
the blue shift of the probe, which may result in distorted
spectra even after delay-time correction.

B. Incoherent Term
The distortion is more clearly understood for CS2. Even
if delay-time correction is performed for the results in
Fig. 5, the IPM signals observed in the DTS cannot be
eliminated from the corrected spectra. They do not show
the response intrinsic to CS2 but reflect the probe-pulse
chirp. How the corrected spectra are distorted by the
probe-pulse modulation and whether the K-K relations
are applicable to the corrected spectra are investigated in
this section.
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Fig. 12. DPS (open circles) for the R63 filter at 60-, 120-,
180-fs delays together with normalized interference spectra with
(dashed curves) and without ( lower solid curves) excitation, and
the difference spectra between them (upper solid curves).

The pump-induced polarization change that is due to
the level population term31 with a chirped probe pulse
Eprsvd ­ Esvdexps2irv2y4d is expressed by2,13

DP st, td ­ xstd ≠ fEprstdDNst 1 tdg , (47)

DP sv, td ­ xsvdfEsvdexps2irv2y4dg ≠ fDNsvdexpsivtdg ,
(48)

where ≠ denotes convolution, t is the time delay be-
tween the pump and the probe, xstd is a polarization
response function that is zero over t , 0, and DNstd
is the pump-induced change in the level population
difference.2,13 The coherent coupling terms are discussed
in Subsection 7.C. If we assume a Gaussian envelope for
Esvd, the temporal behavior of the chirped probe pulse
is given by

F 21fEsvdexps2irv2y4dg ­ Estdexpsigt2d , (49)

where Estd ­ F 21fEsvdg is also a Gaussian [see Eqs. (8)
and (9)]. Delay-time correction is carried out by substi-
tution of t ­ t0 2 vys2gd, where t0 is the time delay for
the corrected signals

DP sv, t0d ­ xsvd
Z

dv0Esv 2 v0dexpf2irsv 2 v0d2y4g

3 DNsv0dexphiv0ft0 2 vys2gdgj . (50)

Substituting g , 1yr stc
2 ,, jrjd into Eq. (50) yields

DP sv, t0d , xsvd
Z

dv0Esv 2 v0dexpf2irsv 2 v0d2y4g

3 DNsv0dexpfiv0st0 2 rvy2dg

­x svdexps2irv2y4d
Z

dv0Esv 2 v0dDNsv0d

3 exps2irv02y4 1 iv0t0d , (51)
Dxsv, t0d ­ DP sv, t0dyEprsvd

­ xsvd
Z

dv0Esv 2 v0dDNsv0d

3 exps2irv02y4 1 iv0t0dyEsvd . (52)

This shows that delay-time-corrected signals are differ-
ent from those obtained with transform-limited pulses by
the factor of exps2irv02y4d. If Esvd has a flat spectrum
fEsvd ­ E0g,

Dxsv, t0d ­ xsvdF st0, rd , (53)

where F st0, rd is a complex function expressed by

F st0, rd ­
Z

dv0DNsv0dexps2irv02y4 1 iv0t0d . (54)

Because F st0, rd has no v dependence, Dxsv, t0d satisfies
the K-K relations, although they are distorted by the
probe-pulse modulation effect by the constant factor of
F st0, rd.

Figure 13 shows the numerical calculation of Eq. (53),
DTyT ­ 22 Im Dxsv, t0d and DF ­ 2Re Dxsv, t0d, in
the two cases of r ­ 0 fs2 [Fig. 13(a)] and r ­ 1400 fs2

[Fig. 13(b)]. Using Eqs. (16) and (C2) of Ref. 2, we cal-
culate xsvd and DNsvd [x s1d and N s2d of Ref. 2] under the
conditions of T1 ­ 300 fs, T2 ­ 60 fs, lex ­ 620 nm, and
tex ­ 60 fs, where T1 and T2 are the energy and the phase
relaxation times of the system and lex and tex are the
pump-pulse wavelength and width (FWHM for squared
hyperbolic secant envelope), respectively. The corrected
spectra measured with a chirped continuum in Fig. 13(b)
do not reproduce the spectra measured with a chirp-
free continuum, i.e., a temporal d-function pulse in
Fig. 13(a). In Fig. 13(b) induced absorption seems to
exist on the longer-wavelength side of the transition wave-
length (620 nm) at negative delays and on the shorter-
wavelength side at positive delays. These signals are
remnants of blue shifts caused by positive phase change
on the longer-wavelength side and of red shifts caused by
negative phase change on the shorter-wavelength side.
Transient spectra obtained with positively chirped con-
tinuum pulses have more or less this tendency near zero
delay, so care must be taken for interpretation.

The corrected spectra for CS2 and glass are obtained
from Eq. (53) if we assume DNstd to be proportional to
Dfstd given in Eqs. (6) and (7), respectively, and xsvd
to be real constant sx0d. In such spectra the DPS and
DTS are expressed by the real and the imaginary parts of
F st0, rd, respectively: The DTS show flat spectra with
negative DTyT near zero delay and flat spectra with
positve DTyT for negative and positive delays. This is
the residual effect of IPM for transparent Kerr material.
However, the DTS do not show a short period of oscil-
lations as a function of t0 for longer delays, which are
expected to result from the oscillations as a function of v

as seen in Fig. 10 [Fig. 11(c)]. This is because the delay-
time correction for Eq. (53) uses both real and imaginary
parts of Dxsv, td. This is a rigorous delay-time correc-
tion. Otherwise, i.e., if the correction is performed with
only DTS ~ Im Dxsv, td, as is the usual case, a short pe-
riod of oscillations in the DTS as a function of t0 cannot
be eliminated from the corrected spectra.
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Fig. 13. DTyT ­ 22 Im Dxsv, t0d (solid curves) and DF ­
2Re Dxsv, t0d (dashed curves) by the numerical calculation
of Eq. (53) for the level population term in the conditions
of T1 ­ 300 fs (energy relaxation time), T2 ­ 60 fs (phase
relaxation time), lex ­ 620 (pump wavelength), and tex ­ 60 fs
(FWHM of the pump pulse with a sech2 envelope). The probe
pulse is assumed to have a flat spectrum and a linear chirp as
follows: (a) r ­ 0 fs2, (b) r ­ 1400 fs2. The vertical scales are
arbitrary units.

If the probe pulse is nonlinearly chirped, i.e., r is not
constant but has v dependence, F st0, rd is expressed as
a function of v through r. This v dependence has noth-
ing to do with the K-K relations. Similarly, if Esvd is
not flat, F st0, rd has the v dependence that is due to
Esvd. Therefore the K-K relations are applicable to the
corrected spectra only in the case of a linearly chirped
(r ­ constant) probe with a flat spectrum. These condi-
tions are not usually satisfied near the fundamental wave-
length, where the continuum has a residual peak of the
fundamental-pulse spectrum and in addition has a nonlin-
ear chirp that is due to SPM in the continuum generation
process.14,15

C. Coherent Term
In Subsection 7.B we took into account only the incoher-
ent term (the level population term). If we consider the
coherent term as well, the corrected spectra are distorted
by the v-dependent function because the coherent term
has sizable signal intensity only when the probe frequency
is within 2pyT2 of the pump frequency. For example, the
pump polarization coupling term31 is expressed by

DP st, td ­ xstd ≠ sssssssssEexst 1 tdhhstd ≠ fEprstdPpst, tdgjddd ,
(55)
where P st, td ­ xstd ≠ Eexst 1 td, the asterisk denotes the
complex conjugate, and a response function hstd exhibit-
ing energy relaxation dynamics is nonzero only for t . 0
because of causality. Then

DP sv, td ­ xsvd
Z

dv0Eexsv0dexpsiv0tdhsv 2 v0d

3
Z

dv00Esv 2 v0 2 v00d

3 expf2irsv 2 v0 2 v00d2y4g

3 xpsvdEex
psv00dexpsiv00td . (56)

Under the flat probe spectrum condition Esvd ­ E0 and
with t ­ t0 2 rvy2,

DP sv, t0d ­ xsvdE0 exps2irv2y4d
Z

dv0hsv 2 v0dEexsv0d

3
Z

dv00xpsv00dEex
psv00dexpf2irsv0 1 v00d2y4

1 isv0 1 v00dt0g

­ Eprsvdxsvd
Z

dv0hsv 2 v0dEexsv0d

3 Gsv0, t0, rd

­ Eprsvdxsvdhhsvd ≠ fEexsvdGsv, t0, rdgj ,
(57)

Fig. 14. DTyT (solid curves) and DF (dashed curves) by the
calculation of Eq. (58) for the pump polarization coupling term in
the same conditions as in Fig. 13. (a) r ­ 0 fs2, (b) r ­ 1400 fs2.
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Table 2. Applicability of the K-K Relations
to the Transient Spectra Measured with
Chirped Probe Pulses for Various Cases

K-K Relations
Condition Applicable? Transient Spectra

Before delay-time correction No Distorted
After delay-time correction

Nonflat spectrum No Distorted
Flat spectrum

With nonlinear chirp No Distorted
With linear chirp Yes Distorted

Flat spectrum and no chirp Yes Intrinsic

Dxsv, t0d ­ DP sv, t0dyEprsvd ­ xsvd
Z `

0
dt

3 exps2ivtdhstdfEexstd ≠ Gst, t0, rdg . (58)

Because the Fourier integration is over t . 0 in Eq. (58),
Dxsv, t0d satisfies the K-K relations. Therefore the
pump polarization coupling term distorts the corrected
spectra around the pump frequency, but the K-K relations
are satisfied if the chirp is linear and the probe spectrum
is flat. It is proved in Appendix F that Dxsv, t0d that is
due to the perturbed free induction decay term31 satisfies
the K-K relations under the same conditions.

Figure 14 shows the numerical calculation of Eq. (58),
DTyT ­ 22 Im Dxsv, t0d and DF ­ 2Re Dxsv, t0d, in
the two cases of r ­ 0 fs2 [Fig. 14(a)] and r ­ 1400 fs2

[Fig. 14(b)] under the same conditions as for Fig. 13. In
Fig. 14(b) the DTS at 260 and 60 fs show a feature of
blue shift, whereas the DTS at 0 fs show a feature of red
shift, compared with Fig. 14(a). That is, the distortion is
symmetric with respect to zero delay, unlike in Fig. 13(b)
where the distortion is antisymmetric with respect to zero
delay. This is because the pump polarization coupling
term is present only in the pump and probe overlap region,
so that it always gives distortion similar to that in the
glass in Fig. 6, where the distortion caused by IPM is
symmetric with respect to zero delay.

Applicability of the K-K relations to the signals mea-
sured with chirped probe pulses is summarized in Table 2.
The DTS and DPS intrinsic to excited materials (free from
the effect of the probe-pulse modulation) can be obtained
only with a continuum with a flat spectrum and with-
out chirp, i.e., a d-function pulse in the time domain.2,13

In femtosecond spectroscopy, therefore, it is essential to
use a continuum with the smallest chirp and the flattest
spectrum. Because the chirp cannot be eliminated com-
pletely in actual measurements, one should always take
the original chirp property of a continuum into account
when interpreting corrected spectra.39

8. CONCLUSIONS
By using a frequency-domain interferometer with white-
light continuum pulses, namely, a femtosecond contin-
uum interferometer, we detected the phase changes in
the continuum pulses caused by the Kerr response in CS2

and in glass over the whole visible region of the spec-
trum extending from 450 to 1000 nm. Because the probe
pulse was frequency chirped, leading to a linear time and
frequency relation, the femtosecond time response was
projected into the DPS as a function of frequency, accom-
panied by spectral shifts in the DTS owing to induced
phase modulation.

Using only the DTS signals, we readily plotted the
relations between time and frequency of the continuum
to characterize the pulse chirp for delay-time correction.
This is a much easier method of chirp measurement than
the conventional cross-correlation method.

To discuss time resolution of a chirped continuum, we
introduced the effective pulse width teff . If tc

2 ,, te
2

,, teff
2 then the trace projected into the frequency do-

main is significantly distorted by induced phase modu-
lation, whereas if tc

2 ,, teff
2 ,, te

2 then the projected
trace reproduces an almost exact time response as a func-
tion of frequency. The second premise is applicable to
a single-shot pulse-shape measurement, the time resolu-
tion of which is limited only by the second-order effect of
the chirp.

Because of the distortion by the induced modulation
effects, chirp-compensation processes before and after a
signal detection do not give the same results, but the
distortion by the modulation effects remains in the chirp-
corrected signals after detection. Even so, the K-K re-
lations hold for the chirp-corrected spectra as long as the
continuum has a flat spectrum and does not have a higher
than linear chirp.

The femtosecond continuum interferometer has opened
a new field of spectroscopy, femtosecond phase spec-
troscopy, which will elucidate the ultrafast dynamics
of excited states by new approaches and will be espe-
cially useful for the study of nonresonant response. For
example, the conventional experiment on femtosecond
optical Kerr response gives delay-time-dependent decay
kinetics, which is the Fourier transform of the frequency
response function in the Raman frequency range that
is due to the resonant Raman scattering by the impul-
sive excitation. FDI will give DPS at each time de-
lay as well, i.e., the frequency response function in the
visible frequency range that is due to the nonresonant
electronic contributions at each transient (femtosecond
time-resolved) molecular arrangement. This informa-
tion is difficult to obtain by other methods such as the
K-K transformation and spectral filtering of a continuum
because the K-K relations are useless in a nonresonant
observation region and a spectrally filtered pulse from
the continuum lacks femtosecond time resolution.

APPENDIX A
The error in DF that is due to the chirp difference be-
tween the probe and the reference is estimated as fol-
lows: If fringes have neighboring peaks at v ­ v0 and
v ­ v0 1 Dv0, the interference fringes with linear chirp
difference are expressed by

f svd ­ cosfvT 2 rsv 2 v0d2y4g , (A1)

with

v0T ­ 2np , (A2)

sv0 1 Dv0dT 2 rDv0
2y4 ­ 2sn 1 1dp . (A3)
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From Eqs. (A2) and (A3) we obtain

Dv0T 2 rDv0
2y4 ­ 2p ,

Dv0 ­ 2pysT 2 rDv0y4d . (A4)

If the peak at v ­ v0 shifts to the peak at v ­ v0 1 Dv1

by a phase change DF in the probe field Eprsvd,

sv0 1 Dv1dT 2 rDv1
2y4 2 DF ­ 2np . (A5)

From Eqs. (A2) and (A5),

Dv1T 2 rDv1
2y4 ­ DF ,

Dv1 ­ DFysT 2 rDv1y4d . (A6)

Using Eqs. (A4) and (A6), we obtain a measured phase
change sDFmd by the calculation

DFmsv0d ­ 2pDv1yDv0

­ DFsT 2 rDv0y4dysT 2 rDv1y4d . (A7)

Equation (A7) shows that DFm , DF if T .. rDv0y4. In
this experiment a beam splitter with a 1-mm-thick BK7
substrate is used. From the expression of GVD,

DGV ­
d2k
dv2

­
l3

2pc2

d2n
dl2

, (A8)

and ld2nydl2 ­ 0.1 (mm21) for BK7 at l ­ 620 nm,4 we
obtain r ­ 2DGV L ­ 3.8 3 102 fs2 for L ­ 2

p
2 mm. This

is overestimation for the 1-mm beam splitter at 45± inci-
dence angle. For T ­ 300 fs, Dv0 ­ 2pysT 2 rDv0y4d ,
2pyT ­ 2.1 3 1022 fs21. Then we obtain rDv0y4 ­
2.0 fs, which satisfies T .. rDv0y4 and DFm ­ 0.994DF

for DF ­ 1 rad.

APPENDIX B
Equation (3) for fitting the t–n curves in Section 4 is
derived from GVD as follows. The pulse field is generally
expressed by

Esvd ­ E0sv 2 v0dexpfiFsvdg ­ E0sv 2 v0dexpf2iksvdxg ,
(B1)

where ksvd ­ nsvdxyc. For example, if E0sv 2 v0d ­
2pE0dsv 2 v0d, the time dependence Estd is obtained by
the inverse FT as

Estd ­ F 21fEsvdg ­ E0 exphifv0t 2 ksv0dxgj . (B2)

Fsvd can be expanded into the Taylor series around v ­
v0 with x ­ L as

Fsvd ­ F0svd 1 F1svd 1 F2svd 1 . . .

­ 2L

24ksv0d 1
dksvd

dv

É
v­v0

sv 2 v0d

1
1
2

d2ksvd
dv2

É
v­v0

sv 2 v0d2 1 . . .

35 . (B3)
We expand DGV in Eq. (A8) into the series of l2s2n11d,
using the Seilmeier equation

n2 ­ 1 1 Qys1 2 l0
2yl2d (B4)

to obtain

DGV ­
l0

2pc2

Q
s1 1 Qd1/2

243
l0

l
1 10

√
1 2

1
4

Q
1 1 Q

!
l0

3

l3

1 21

√
1 2

1
2

Q
1 1 Q

!
l0

5

l5 1 . . .

35 . (B5)

DGV is proportional to linear chirp parameter r, which is
defined in the frequency domain by

F2svd ­ 2rsv 2 v0d2y4 , r ­ 2DGV L , (B6)

Because F0svd and F1svd give a phase shift and a time
displacement, respectively, of the envelope function E0std,
it is enough to consider only F2svd. Then

Esvd ­ E0sv 2 v0dexpf2irsv 2 v0d2y4g . (B7)

If E0sv 2 v0d ­ E0p1/2 exps2tc
2v2y4d, Eq. (B7) is inverse

Fourier transformed into the time domain to yield

Estd ­ F 21fEsvdg ­ E0se 2 igd1/2 expf2et2 1 ifstdg ,

fstd ­ v0t 1 gt2 . (B8)

The instantaneous frequency is given by

v ­ dfstdydt ­ v0 1 2gt

, v0 1 2tyr, tc
2 ,, jrj . (B9)

Therefore r is obtained from the slope of a t–v curve as

dtydvs­ 2dtydvd ­ ry2 ­ DGV L

­ Lsb0n 1 c0n3 1 d0n5 1 . . .d , (B10)

where t is a time delay. Integrating Eq. (B10) leads to

tsnd ­ a 1 bn2 1 cn4 1 dn6 . . . , (B11)

which is used as the fitting function [Eq. (3)] in Section 4.

APPENDIX C
Even for a constant refractive-index change Dn, the phase
change is frequency linear as DFsvd ­ 2vLDnyc. The
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simulations in Section 5 and the analyses in Section 6 do
not take account of this frequency dependence but use

Dfstd ­ 2v0LDnstdyc (C1)

in the time domain, where v0 is the center frequency
of probe pulses. For chirped pulses, however, the fre-
quency shifts in time, so that the above equation is
an approximation under the conditions derived in what
follows.

The probe pulse suffering the phase distortion Fsvd is
expressed by

E0svd ­ E0 expf2tc
2sv 2 v0d2y4 1 iFsvdg , (C2)

where

Fsvd ­ F0svd 1 F1svd 1 F2svd

­ 2Ln0v0yc 2 z sv 2 v0d 2 rsv 2 v0d2y4 . (C3)

In the time domain,

E0std ­ F 21fE0svdg ~ expf2se 2 igdst 2 z d2

1 iv0st 2 Ln0ycdg . (C4)

If there is a constant refractive-index change Dnsvd ­ Dn,
the phase change is DFsvd ­ 2vLDnyc. Then

Estd ­ F 21fE0svdexps2LDnvycdg

~ expf2se 2 igdst 2 z 2 LDnycd2

1 iv0st 2 Ln0yc 2 LDnycdg . (C5)

If the first term in the exponent in relation (C5) is much
smaller than the second, i.e.,

j2se 2 igdst 2 z dj ,, jv0j , jse 2 igdsLDnycd ,, jv0j ,
(C6)

then the phase change Dfstd ­ 2v0LDnyc offers a good
approximation in the time domain. As an extension of
this treatment, even when the refractive-index change is
time dependent fDnstd; dispersive in the frequency do-
main], the use of Dfstd ­ 2v0LDnstdyc as in this paper is
justified as the first approximation under conditions (C6);
the frequency shift 2gst 2 z d is much smaller than v0. If
the frequency shift becomes comparable with v0,

Dfstd ­ 2fv0 1 2gst 2 z dgLDnstdyc (C7)

should be the second approximation, if e ,, jgjstc
2 ,,

jrjd and jgsLDnycdj ,, jv0j are satisfied. This second
approximation leads to an asymmetric shape in the DPS,
but in such a large frequency range the dispersion of the
nonlinear refractive index in a sample, neglected in the
present paper, is also important.

APPENDIX D
The effect of e0 1 ig0 in Eq. (20) on DFstd and DTyT std
can be seen by examination of the square of hstd ;
A expfBstdgyd in Eq. (19) as follows:

h2std ­
te

2

T 2 exp

√
22

t2

T 2

!
­ te

2sa 2 ibdexpf22sa 2 ibdt2g

­ te
2sa2 1 b2d1/2 expf22sa 2 ibdt2 2 iug , (D1)

where

1yT 2 ­ a 2 ib , (D2)

a ­
1 1 e0z

te
2s1 1 2e0z 1 z2d

, (D3)

b ­
g0z

te
2s1 1 2e0z 1 z2d

, (D4)

z ­ teff
2yte

2 , (D5)

tan u ­ bya su ^ 0d . (D6)

From Eq. (D1) we obtain

DFstd ­ d Re hstd ­ dtesa2 1 b2d1/2 exps2at2d

3 cossbt2 2 uy2d ,

DTyT std ­ 22d Im hstd ­ 22dtesa2 1 b2d1/2 exps2at2d

3 sinsbt2 2 uy2d . (D7)

These functions show behavior similar to that in Fig. 11
and relations (35)–(38) as a function of t.

APPENDIX E
Relations (40) and (41) are derived as follows. In the
case of tc

2 ,, jrj ,, te
2, t ­ 0 is taken for simplicity

and gstd ­ A expfBs22gtdgyd in Eq. (16) is expanded up
to second order:

gstd , s1 2 d1
2 2 id2dexpf2s1 2 d3

2 2 id4dt2yte
2g

, fs1 2 d1
2dcossd4t2yte

2d 1 d2 sinsd4t2yte
2dg

3 expf2t2s1 2 d3
2dyte

2g 1 ifsinsd4t2yte
2d

2 d2 cossd4t2yte
2dgexpf2t2s1 2 d3

2dyte
2gj , (E1)

where
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d1
2 ­

tc
2

2te
2 1

3
8

√
r

te
2

!2

, (E2)

d2 ­
r

2te
2

, (E3)

d3
2 ­ 3

√
tc

2

r

!2

1 3
tc

2

te
2

1

√
r

te
2

!2

, (E4)

d4 ­
r

te
2 1 2

tc
2

r
. (E5)

Then

Re gstd , exps2t2yte
2df1 2 d1

2 1 d3
2t2yte

2 1 d2d4t2yte
2

2 sd4
2y2dt4yte

4g

, exps2t2yte
2dexphfd3

2 1 d2d4 2 sd4
2y2dt2yte

2g

3 t2yte
2 2 d1

2j

, exps2t2yT 2 2 d1
2d , (E6)

Im gstd , exps2t2yte
2dsd4t2yte

2 2 d2d , (E7)

where

T 2 ­ te
2f1 1 d3

2 1 d2d4 2 sd4
2y2dt2yte

2g

­ te
2h1 1 stc

2yrd2s3 2 2t2yte
2d 1 stc

2yte
2ds4 2 2t2yte

2d

1 sryte
2d2f3y2 2 s1y2dt2yte

2gj . (E8)

APPENDIX F
It is proved that the delay-time-corrected spectrum
Dxsv, t0d arising from the perturbed free induction de-
cay term satisfies the K-K relations as follows: The
perturbed free induction decay term is expressed by31

DP st, td ­ 2xstd ≠ sssssssssEexst 1 tdhhstd ≠ fEex
pst 1 tdP stdgjddd ,

P std ­ xstd ≠ Eprstd , (F1)

DP sv, td ­ 2xsvd
Z

dv0Eexsv0dexpsiv0tdhsv 2 v0d

3
Z

dv00Eex
psv00dexpsiv00tdxsv 2 v0 2 v00d

3 Esv 2 v0 2 v00dexpf2irsv 2 v0 2 v00d2y4g ,
(F2)

DP sv, t0d ­ 2xsvdE0 exps2irv2y4d
Z

dv0Eexsv0d

3 hsv 2 v0d
Z

dv00xsv 2 v0 2 v00dEex
psv00d

3 expf2irsv0 1 v00d2y4 1 isv0 1 v00dt0g .
(F3)

Substituting v00 ­ V 2 v0 yields
Dxsv, t0d ­ DP sv, t0dyEprsvd ­ 2xsvd
Z

dv0Eexsv0d

3 hsv 2 v0d
Z

dVxsv 2 VdEex
psV 2 v0d

3 expf2irV2y4 1 iVt0g

­ 2xsvd
Z

dv0Eexsv0dhsv 2 v0d

3 fxsvd ≠ H sv, v0, t0, rdg

­ 2xsvd
Z

dv0Eexsv0dhsv 2 v0d

3
Z `

0
dt exps2ivtdxstdH st, v0, t0, rd

­ 2xsvd
Z `

0
dt exps2ivtdxstd

3
Z

dv0hsv 2 v0dEexsv0dH st, v0, t0, rd

­ 2xsvd
Z `

0
dt exps2ivtdxstd

Z `

0
dt0

3 exps2ivt0dhst0dfEexst0d ≠ H st, t0, t0, rdg .
(F4)

Hence, similarly to the other terms, Dxsv, t0d that is due
to the perturbed free induction decay term satisfies the
K-K relations if the chirp is linear and the probe spectrum
is flat.
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