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Induced phase modulation of chirped continuum pulses
studied with a femtosecond frequency-domain interferometer
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The effect of rapid phase change on chirped continuum pulses is studied with a frequency-domain interferometer.
Because of the chirp, temporal evolution of the optical Kerr response in CS2 is projected into difference phase
spectra. The chirped continuum shows spectral shifts that are due to induced phase modulation even when
the continuum has a flat spectrum.

When a femtosecond white-light continuum pulse
is used in femtosecond spectroscopy, the frequency
chirp, which is caused by positive group-velocity dis-
persion of optical elements,' must be phase compen-
sated to obtain true transient spectra, otherwise the
spectra will have a wavelength-dependent time-delay
distortion. Because of higher-order phase distortion,
however, it is difficult to eliminate the relative phase
difference completely over the whole spectral range
of the continuum even with a combination of nega-
tive group-velocity dispersion optical configurations.2
Instead, delay time correction in the transient spectra
is often performed. In this case, however, it is not
obvious if it gives us equivalent results to those
observed with a chirp-compensated pulse.

In this Letter the effect of rapid phase change on a
chirped continuum is studied to show that there is a
residual effect of the chirp that cannot be eliminated
even after delay time correction. For this purpose,
the phase change of the continuum induced by the op-
tical Kerr response of a transparent Kerr liquid CS2 is
measured with a frequency-domain interferometer.3

The laser source, amplification, and measurement
systems were described in a previous Letter.3 The
amplified pulses of 60-fs duration, 620-nm wave-
length, 10-kHz 'repetition rate, and 2-,1 J energy are
divided into the pump and probe pulses. The probe
is focused into an ethylene glycol jet to generate
a white-light continuum. The continuum pulse is
further divided into the two arms of a Michelson
interferometer for the reference and probe, and the
two pulses are displaced temporally by a few hun-
dreds of femtoseconds. Then they travel along a
common path and. are detected by a spectrometer
with a multichannel photodiode array after being
transmitted through a sample. The pump is blocked
by a mechanical shutter at 10 Hz to obtain difference
spectra with and without excitation.

Typical results of CS2 in a 1-mm cell are shown
in Fig. 1. The excitation density was approximately
5.7 X 10-3 J/cm2 . Figure 1(a) shows probe spectra
with and without excitation and the difference trans-

mission spectra (DTS), which were taken by blocking
the reference beam. Figure 1(b) shows normalized
interference spectra with and without excitation and
the difference phase spectra (DPS; open circles). The
DPS were derived by the same procedure as before.3

Figure 2 displays the DTS and DPS without delay
time correction at three time delays, where zero de-
lay is defined at the maximum overlap between the
pump and probe at 620 nm. Since the continuum
is positively chirped after passing through optical
elements of -11-mm total thickness, the red region
of the probe arrives earlier at the sample than does
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Fig. 1. Signals for CS2 without delay-time correction.
(a) DTS (upper solid curve) and probe spectra with exci-
tation (dashed curve) and without excitation (lower solid
curve) by the pump-probe measurement. (b) DPS (open
circles), interference spectra with (dashed curve) and with-
out (lower solid curve) excitation, and the difference in-
terference spectrum between them (upper solid curve).
Here the interference is normalized by the probe spectrum
without excitation.

0146-9592/93/050370-03$5.00/0 © 1993 Optical Society of America

(a) < a_

~~~~,_-

i ,<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Il 

1

-0.5[



March 1, 1993 / Vol. 18, No. 5 / OPTICS LETTERS 371

I-
I-

0.5

0

-0.5

0

0.5 :&

0 C

-0.5

0

00000

0 ~~360 f

650 750 850
Wavelength(nm)

Fig. 2. DTS and DPS in CS2 obtained by chirped contin-
uum pulses at 220-, 280-, and 360-fs time delays without
delay-time correction. Zero delay is defined at the max-
imum overlap between the pump and probe at 620 nm.

the blue region such that the decrease in wavelength
corresponds to the increase in time delay. Hence,
the DPS do not rise instantaneously over the whole
spectral range but show a characteristic shape that
reflects the temporal evolution of the Kerr response
in CS2: the instantaneous electronic response and
the subsequent nuclear response4 with decreasing
wavelength. That is, because of the one-to-one corre-
spondence between frequency and time in the chirped
continuum, the temporal Kerr dynamics is projected
into the frequency domain.

Note also that the DTS are not zero but show
an appreciable oscillatory structure. When the time
delay is increased from 220 to 360 fs, the DPS signal
moves toward a longer wavelength. The oscillatory
structure also moves following the DPS, so that the
DTS and DPS signals should be closely related to
each other. In order to clarify the origin of the
DTS signals, a numerical calculation is performed to
simulate the experimental results. For this purpose,
the frequency chirp of the continuum must be well
characterized.5 To estimate the chirp, the time delay
was plotted against the peak wavelength of the
DPS as shown in Fig. 3 (circles). Here we used
the peak of the DTS instead of that of the DPS
because the wavelengths of both peaks coincide with
each other. This gives a much easier method for
measuring the chirp than does the conventional cross-
correlation method.6 The solid curve is a fitting
function: r(v) = a + bv2 + cv4 with a = 1090, b =
-3540, and c -4460. Here r is the time delay
in femtoseconds and v is the frequency in petahertz
(10'5 Hz).

If the probe-pulse field is assumed to have linear
chirp, the probe field is expressed by

E(co - coo) = Eo(co - coo)exp[-ip(o - coo)2], (1)

where p is a linear chirp parameter. If Eo(co)=
EoirT'2 exp(-,r 2 co2/4), where r-, is the Ile half-width
of the probe-field envelope, inverse Fourier transform

of Eq. (1) leads to the temporal dependence of the
pulse field:

E(t) = F-1[E(&) - coo)]

- Eo(E -iy)"
2 exp[icoot - (e - iy)t2],

where e = r 2 /( 4 + l6p2 ) and y =4p/(p 4 + 16p 2).
If p2 << 4p, y - l/( 4p). Since 4?(t) = co0t + yt2 ,
the instantaneous frequency is to = d'D/dt = coo +
2yt. Therefore p is obtained from the slope of a t-v
curve as p - (1/2)dt/dco = -(1/2)dT/dw. From the
fitting function, p = 350 fs2 at 700 nm.

The simulation is performed as follows:

F[E(t)] = R(&o)exp[i4(Do)],

F{E(t)exp[iAcI(t - r)]} = R(o, r)exp[i4D(o), r)],

AT/T(co, r) = [R2(co, r) - R2 (co)]/R2(&o),

AC(co, r) = (D(co,r) - '(Do),

where E(t) is the inverse Fourier transform of the
probe-pulse field [Eq. (1)] with p = 350 fS2 and a
hyperbolic-secant envelope Eo(co). According to the
probe spectra in Fig. 1(a), IE(t)12 is assumed to
have a 6-fs FWHM in the Fourier-transform limit
(p = 0). AcI(t) is a phase change that consists of
the electronic and nuclear response terms, where the
former is assumed to be the same as the pump-
pulse intensity function with 60-fs FWHM and the
latter is assumed to be the same function as Eq. (3)
in Ref. 4. The results are shown in Fig. 4, which
reproduces the observed spectral shifts fairly well.
It is therefore proved that the DTS signals are caused
by induced phase modulation7; rise and decay in the
DPS with decreasing wavelength, i.e., with increasing
time delay, are accompanied by red and blue shifts of
the probe frequency, respectively.

The DTS signals can also be explained as fol-
lows. Suppose the probe pulse experiences a small
phase change Ai\(t), which follows a Gaussian pump-
intensity profile with a l/e half-width of re such that

A^I(t) = 8 exp(-t 2/e 2
) , 8 << 1,

E(t)exp[iAF(t)] - E(t)[1 + i8 exp(-t 2 /Te2 )].
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Fig. 3. The t-v curve of the continuum, which was ob-
tained from the results in Fig. 2 by plotting the time
delays against the wavelengths at the peaks of the DTS.
The solid curve is the fitting function (see text).

cP-. .

QPo o 220 fs

oP 0 0cPO 280 fs
l i I



372 OPTICS LETTERS / Vol. 18, No. 5 / March 1, 1993

I-1.

Time (fs)

-I

-1.

240 120 0 -120
U. I . , , I , , _

-120fs probe

0

o fs

…-- - - --- ','

-~ ~~~\ Ic

600 700
Wavelength(nm)

1.0

(a
0 X

1.0

800

Fig. 4. Results of the simulation (see text). The probe
spectrum and the DTS (solid curve) and DPS (dashed
curve) are shown at -120-, 0-, 120-fs time delays. The
calibrated time is scaled on the top horizontal line.

The Fourier transform of the right-hand side of rela-
tions (2) is

FTE(t) + iE(t)ACF(t)] = E(@o) + i8EeX(co),

Ee (c.) = Eor 1/2(e -iy) 11 2 exp[ -) 2+ 1
(1/Te 2 + 6 jy),1/2 4(1/,re2 + e j y)j

The DTS is expressed as

AT/T(w) I[E(w) + i8 Eex(&O)]/E(o) 12
-1

- 28 Im[Eex(c)/E(co)]

= - 28 Im((e - iy)1"2/(l/Te2 + e -i,)/2

X exp{-co2/[4(1/re2 + e - iy)]
+ Tp2W 2/4 + ipto2}).

In the limit of a broad probe spectrum (Trp - 0),

AT/T(co) - -28 Im((-iy)1/2 /(l/'re2 - iy)12

X exp{-co2 /[4(1/re 2 - iy)] + ipw 2 }). (3)

Further, when p is much larger than Te2 [y=
1/(4p) << 1/T;2] and p > 0,

ATIT - 8(1/2p)1/2'T exp(- Te
2cW2/4)

X (cos p(02 - sin pc 2) . (4)

The oscillation observed in the DTS can be explained
qualitatively by relation (4), although the condition

/y << lI/e 2 is not satisfied in the present experiment
because p = 350 fS2 and Te = 43 fs.

It should be noted that frequency shifts due
to induced phase modulation are observed even
when the probe spectrum is flat; the shifts de-
pend not only on the spectral shape but also
on the chirp. When the continuum has a flat
spectrum (Tr = 0) and is not chirped (p = 0),
no signal is observed in DTS (AT/T = 0), as
readily derived from relation (3). This is because
all the frequency components of the probe have
the largest amplitude at the same time such that
the frequency shift of any component is canceled by
the shift of its neighboring components. When the
continuum is chirped, on the other hand, the fre-
quency and time are related linearly through Aco =
2yAt such that the frequency shift of one component
interferes with its neighboring components to give
frequency-domain interference as in relation (4).

Even after delay time correction is performed for
the signals in Fig. 2, the spectral shifts observed in
the DTS cannot be eliminated, so that the corrected
spectra will not show the intrinsic dynamics. The
DTS and DPS free from the probe-pulse modula-
tion effect can be obtained only with a probe pulse
with a flat spectrum and without chirp, i.e., a 8-
function pulse in the time domain. In femtosec-
ond spectroscopy, therefore, it is essential to use a
continuum with as small chirp as possible. In the
real measurements, however, the chirp cannot be
eliminated completely, so that the original chirp of a
continuum should always be taken into account when
interpreting the corrected spectra.
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