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Abstract. Let C be a convex closed curve of class C2 in the
plane. We think the domain bounded by C as a billiard table. We
state the following. If a convex billiard is integrable, the set of
points with irrational slopes make invariant circles of class C1 in
the phase space. If the sets of points with rational slopes make
invariant circles K, then the invariant circles K are of class C1.
Otherwise, we find closed curves of class C1 in the union of invari-
ant circles with the same slope.

1. Introduction

Let C be a simple closed and strictly convex curve of class Ck, k ≥ 2,
with length L in the Euclidean plane E and let c : R −→ E be its
representation with respect to the arclength, namely |ċ(s)| = 1 for all
s ∈ R where R is the set of all real numbers. Let x = (xj)j∈Z be a
sequence of points in C where Z is the set of all integers. We say that
x is a billiard ball trajectory if the angle between the tangent vector A
to C at xi and the oriented segment T (xi−1, xi) from xi−1 to xi is equal
to the one between A and T (xi, xi+1) for all i ∈ Z.

A billiard ball trajectory x = (xj)j∈Z in C is represented by a se-
quence s = (sj)j∈Z of real numbers such that xj = c(sj) and sj <
sj+1 < sj + L for all j ∈ Z and the sequence s = (sj)j∈Z will be
considered to be a configuration {(j, sj)}j∈Z in the configuration space
X = Z × R ⊂ R2. A configuration s = (sj)j∈Z for x is determined
uniquely up to the difference pL (p ∈ Z).

Let x0, x1 ∈ C and (x0, x1, x2) the billiard ball trajectory. Let θ0

(resp., θ1) be the angle between the segment T (x0, x1) from x0 to x1

(resp., T (x1, x2)) and the tangent vector to C at x0 (resp., x1). Set
u0 = cos θ0 and u1 = cos θ1. We call Ω = C × (−1, 1) the phase
space which is the set of all pairs (x, u) for x ∈ C and u ∈ (−1, 1).
Define a billiard ball map φ : Ω −→ Ω as φ(x0, u0) = (x1, u1). The
billiard ball map is an example of a monotone twist map ([12]). Let
x̄ = (x0, u0) ∈ Ω and φj(x̄) = (xj, uj) for all j ∈ Z. Then, the sequence
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x = (xj)j∈Z is a billiard ball trajectory. Any billiard ball trajectory is
given in this way.

A convex billiard is said to be integrable if a subset of full measure
of the phase space is foliated by closed curves invariant under the bil-
liard ball map φ. The billiards in circles and ellipses are integrable. G.
Birkhoff’s conjecture states that the only examples of integrable bil-
liards are circular and elliptic billiards ([5]). M. Bialy ([4]) has given a
partial answer of the conjecture, proving that C is a circle if Ω is foli-
ated by φ-invariant continuous closed curves not null-homotopic in Ω.
M. Wojtkowski ([13]) proved that C is a circle if the domain bounded
by C is foliated by smooth caustics to which almost every billiard ball
trajectories are tangent. E. Y. Amiran ([1]) proved that when C is a
strictly convex bounded planar domain with a smooth boundary and is
integrable near the boundary, its boundary is necessarily an ellipse. As
was stated in [4] Bialy’s theorem corresponds to a theorem of E. Hopf
([9]) concerning Riemannian metrics on tori without conjugate points.
N. Innami ([10]) extended Bialy’s theorem to the higher dimensional
case and the nonpositive curvature case as L. Green ([7]) did.

We say that a φ-invariant continuous closed curve in Ω is an invariant
circle if it is not null-homotopic. If the billiard table is of class C2,
then the map φ in Ω is an area preserving twist map of class C1, and
Birkhoff’s theorem ensures only that the invariant circles are Lipshitz
and any invariant circle is the graph of a Lipshitz function, {G(s) =
(c(s), u(s)) : 0 ≤ s ≤ L} ([8], [12]). N. Innami ([11]) discussed the
differentiability of invariant circles by using the geometry of geodesics
due to H. Busumann ([6]) which was reconstructed in the configuration
space X by V. Bangert ([2], [3]). In this note his results applies to an
integrable convex billiard and we note the differentiability of invariant
circles.

The notion of slope is usful to classify the invariant circles. Let
x = (xj)j∈Z be a billiard ball trajectory and let a(xj, xj+1) be the
arclength of the subarc of C from xj to xj+1 measured with the positive
orientation of C. We define the slope α(x) of x as

α(x) = lim inf
n→∞

1

n

n−1∑
j=0

a(xj, xj+1) = lim inf
n→∞

sn

n
.

where s = (sj)j∈Z is a configuration for x. Let α(x̃) denote the slope
of the billiard ball trajectory determined by x̃ for x̃ ∈ Ω. Set

Ω(a) = {x̄ ∈ Ω |α(x̄) = aL}.
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If f is an invariant circle in Ω, then α(x̄) are constant for all x̄ ∈ f ,
and, therefore, f ⊂ Ω(a) for some a with 0 < a < 1. We say that a
closed curve f in Ω not null-homotoic is a circle with constant slope if
α(x̄) are constant for all x̄ ∈ f .

Theorem 1. Let C be a simple closed convex curve of class Ck, k ≥ 2,
with positive curvature κ and length L. Assume that its convex billiard
is integrable. Let a be a real with 0 < a < 1. Then the following are
true.

(1) When a is irrational, Ω(a) is the invariant circle f with slope
aL in Ω such that the graph Gf (s) of Ω(a) is of class C1.

(2) When a is rational, then the number of the invariant circles
with slope aL in Ω is either one or two. If there exists just one
invariant circle f with slope aL, then the graph Gf (s) of f is
of class C1. Otherwise, there exist two closed curves G1(s) =
(c(s), u1(s)) and G2(s) = (c(s), u2(s)), 0 ≤ s ≤ i(q)L, of class
C1 with slope aL which are not null-homotopic where i(q) = 1+
(1−(−1)q)/2 for a = p/q reduced to its lowest terms. Moreover,
Gt(s) = (c(s), max{u1(s), u2(s)}) and Gb(s) = (c(s), min{u1(s),
u2(s)}), 0 ≤ s ≤ L, are invariant circles with slope aL.

If an invariant circle f is of class C1, then the caustic K made from
f is a continuous curve in the domain bounded by C. Here we say
that a closed continuous curve K is a caustic if K has the following
property. Let x0 be an arbitrary point in C and let T (x0, x1) be a
segment tangent to K. If x = (xj)j∈Z is the billiard ball trajectory
determined by T (x0, x1), then T (xj, xj+1) is a segment tangent to K
for all j ∈ Z. Without C2 differentiability condition on C the caustics
are not continuous, in general.

2. Foliation by asymptotes and parallels

The contents in this section are based on the resuilts in [2], [3] and
[11] and, therefore, we need not to prove the lemmas here again. We
work in the configuration space X. Let s = (sj)i≤j≤k be the con-
figuration of a billiard ball trajectory x = (xj)i≤j≤k. We say that
s = (sj)i≤j≤k is a segment from si to sk in X if

k−1∑
j=i

|c(sj+1) − c(sj)| = max

{
k−1∑
j=i

|c(tj+1) − c(tj)|

}
where t = (tj)j∈Z is any configuration such that ti = si, tk = sk and
tj < tj+1 < tj + L. We say that s = (sj)j∈Z is a straight line in X
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if the restriction of s to the interval i < j < k in Z is a segment
for every i < k ∈ Z. We say that a straight line s is (positively)
asymptotic to a straight line t if the sequences of segments from si to
tk converges to the sub-ray s = (sj)j≥i of s as k −→ ∞ for every i ∈ Z.
We say that a straight line s is a parallel to a straight line t if the
sequences of segments from si to tk converge to the sub-ray s = (sj)j≥i

and s = (sj)j≤i of s as k −→ ∞ and k −→ −∞, respectively, for
every i ∈ Z. In general, the asymptote and parallel relation are not
symmetric. A simple modification of the arguments in [11] proves the
following.

Lemma 2. Let f be a continuos curve in Ω with its graph Gf (s) =
(c(s), u(s)), s ∈ [t0, t1]. Assume that the configurations s(x̄) for all
x̄ ∈ f are straight lines and they are asymptotic to each other. Then,
the graph Gf (s) is of class C1.

The continuity of the curvature of C plays an important role in the
proof of Lemma 2 as was seen in [11]. The situation in Lemma 2
appears in the case of irrational slopes.

Lemma 3. Let a be an irrational number with 0 < a < 1. Let f be
a invariant circle in Ω with slope aL. Let s(x̄) be the configuration
corresponding to x̄ ∈ f . Then, all s(x̄) are parallels to each other, and,
therefore, f is of class C1.

Next we treat the case that a is rational. Let a = p/q where p and q
are mutually prime integers. In this case there exists a periodic straight
line s = (sj)j∈Z with period (q, p), i.e., sj+q = sj + pL for all j ∈ Z.
Let A ⊂ R be the set of those parameters s0 such that s = (sj)j∈Z is
a periodic straight line with period (q, p) and B = R \ A. The set B
is either an empty set or a union of open intervals (bk, tk), k ∈ I where
I ia an index set. If A is a discrete set, then we have tk = bk+1 for
all k ∈ I. Let uk = (uk

j)j∈Z and vk = (vk
j)j∈Z be periodic straight

lines with period (q, p) such that uk
0 = bk and vk

0 = tk. For every
s0 ∈ (bk, tk) ⊂ B there exists two straight lines with slope aL. One
s is the positive asymptote to vk through s0 and the other s is the
positive asymptote to uk through s0. Then, s and s is the negative
asymptotes to uk and vk through s0, respectively. Let S(uk, vk) ⊂ X
be the strip bounded by two straight lines uk and vk. We have two
foliations F k = {s | s0 ∈ (bk, tk)} and F k = {s | s0 ∈ (bk, tk)} of the
interior of the strip S(uk, vk) by parallels for each k ∈ I. Suppose that
S(uk+1, vk+1) is next to S(uk, vk). Let F0 be the set of all periodic
straight lines with period (q, p) through s0 ∈ A. Then, each set of
straight lines F1 = · · · ∪ F k−1 ∪ F k ∪ F k+1 ∪ · · · ∪ F0 and F2 = · · · ∪
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F k−1 ∪F k ∪F k+1 ∪ · · · ∪F0 gives a foliation of X by paralleles to each
other in the interior of each strip S(uk, vk). Moreover, all straight lines
in F k ∪ F k+1 are asymptotic to the positive vk and so to the negative

vk are all straight lines in F k ∪ F k+1 for all k ∈ I. These foliations
correspond to closed curves not null homotopic in Ω of class C1. The
curves cover C in Ω twice if q is odd.

Lemma 4. Let a = p/q be a rational number with 0 < a < 1 where p
and q are mutually prime integers. Let s(x̄) be the configuration in X
corresponing to x̄ ∈ Ω. If s(x̄) are periodic straight lines with period
(q, p) for all x̄ ∈ Ω(a), then Ω(a) is an invariant circle of class C1.
Otherwise, there are two foliations of X which correspond to closed
curves not null-homotopic and of class C1.

E. Gutkin and A. Katok ([8]) mentions some examples of invariant
circles and caustics.

3. Proof of Theorem 1

In this section we prove Theorem 1. When Ω(a), 0 < a < 1, is an
invariant circle f , we have already proved that f is of class C1. Suppose
Ω(a) is not an invariant circle. Then, a is a rational number p/q where
q and p are mutually prime integers. Let dj ( resp., ej ) be a sequence of
irrational numbers with dj > a (resp., ej < a ) converging to a. Then,
Ω(dj) and Ω(ej) converge to subsets Gb and Gt contained in Ω(a) which
are invariant circles. More precisely, Gb ∪ Gt is the boundary of Ω(a)
and the configurations s(x̄) in X corresponding to x̄ ∈ Gb ∩ Gt are
periodic straight lines with period (q, p). Lemma 4 completes the proof
of Theorem 1.
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