平面凸ビリヤードの不変円の微分可能性について

印南信宏 (新潟大)

ABSTRACT. Let C be a convex closed curve of class C^2 in the plane. We think the domain bounded by C as a billiard table. We state the following. If a convex billiard is integrable, the set of points with irrational slopes make invariant circles of class C^1 in the phase space. If the sets of points with rational slopes make invariant circles K are of class C^1 . Otherwise, we find closed curves of class C^1 in the union of invariant circles with the same slope.

1. INTRODUCTION

Let C be a simple closed and strictly convex curve of class C^k , $k \ge 2$, with length L in the Euclidean plane **E** and let $c : \mathbf{R} \longrightarrow \mathbf{E}$ be its representation with respect to the arclength, namely $|\dot{c}(s)| = 1$ for all $s \in \mathbf{R}$ where **R** is the set of all real numbers. Let $x = (x_j)_{j \in \mathbf{Z}}$ be a sequence of points in C where **Z** is the set of all integers. We say that x is a *billiard ball trajectory* if the angle between the tangent vector A to C at x_i and the oriented segment $T(x_{i-1}, x_i)$ from x_{i-1} to x_i is equal to the one between A and $T(x_i, x_{i+1})$ for all $i \in \mathbf{Z}$.

A billiard ball trajectory $x = (x_j)_{j \in \mathbf{Z}}$ in *C* is represented by a sequence $s = (s_j)_{j \in \mathbf{Z}}$ of real numbers such that $x_j = c(s_j)$ and $s_j < s_{j+1} < s_j + L$ for all $j \in \mathbf{Z}$ and the sequence $s = (s_j)_{j \in \mathbf{Z}}$ will be considered to be a configuration $\{(j, s_j)\}_{j \in \mathbf{Z}}$ in the configuration space $\mathbf{X} = \mathbf{Z} \times \mathbf{R} \subset \mathbf{R}^2$. A configuration $s = (s_j)_{j \in \mathbf{Z}}$ for x is determined uniquely up to the difference pL ($p \in \mathbf{Z}$).

Let $x_0, x_1 \in C$ and (x_0, x_1, x_2) the billiard ball trajectory. Let θ_0 (resp., θ_1) be the angle between the segment $T(x_0, x_1)$ from x_0 to x_1 (resp., $T(x_1, x_2)$) and the tangent vector to C at x_0 (resp., x_1). Set $u_0 = \cos \theta_0$ and $u_1 = \cos \theta_1$. We call $\Omega = C \times (-1, 1)$ the phase space which is the set of all pairs (x, u) for $x \in C$ and $u \in (-1, 1)$. Define a billiard ball map $\varphi : \Omega \longrightarrow \Omega$ as $\varphi(x_0, u_0) = (x_1, u_1)$. The billiard ball map is an example of a monotone twist map ([12]). Let $\bar{x} = (x_0, u_0) \in \Omega$ and $\varphi^j(\bar{x}) = (x_j, u_j)$ for all $j \in \mathbb{Z}$. Then, the sequence

Date: October 26, 2011.

 $x = (x_j)_{j \in \mathbb{Z}}$ is a billiard ball trajectory. Any billiard ball trajectory is given in this way.

A convex billiard is said to be *integrable* if a subset of full measure of the phase space is foliated by closed curves invariant under the billiard ball map φ . The billiards in circles and ellipses are integrable. G. Birkhoff's conjecture states that the only examples of integrable billiards are circular and elliptic billiards (5). M. Bialy (4) has given a partial answer of the conjecture, proving that C is a circle if Ω is foliated by φ -invariant continuous closed curves not null-homotopic in Ω . M. Wojtkowski ([13]) proved that C is a circle if the domain bounded by C is foliated by smooth caustics to which almost every billiard ball trajectories are tangent. E. Y. Amiran ([1]) proved that when C is a strictly convex bounded planar domain with a smooth boundary and is integrable near the boundary, its boundary is necessarily an ellipse. As was stated in [4] Bialy's theorem corresponds to a theorem of E. Hopf (9) concerning Riemannian metrics on tori without conjugate points. N. Innami ([10]) extended Bialy's theorem to the higher dimensional case and the nonpositive curvature case as L. Green ([7]) did.

We say that a φ -invariant continuous closed curve in Ω is an *invariant* circle if it is not null-homotopic. If the billiard table is of class C^2 , then the map φ in Ω is an area preserving twist map of class C^1 , and Birkhoff's theorem ensures only that the invariant circles are Lipshitz and any invariant circle is the graph of a Lipshitz function, $\{G(s) = (c(s), u(s)) : 0 \le s \le L\}$ ([8], [12]). N. Innami ([11]) discussed the differentiability of invariant circles by using the geometry of geodesics due to H. Busumann ([6]) which was reconstructed in the configuration space **X** by V. Bangert ([2], [3]). In this note his results applies to an integrable convex billiard and we note the differentiability of invariant circles.

The notion of slope is usful to classify the invariant circles. Let $x = (x_j)_{j \in \mathbb{Z}}$ be a billiard ball trajectory and let $a(x_j, x_{j+1})$ be the arclength of the subarc of C from x_j to x_{j+1} measured with the positive orientation of C. We define the slope $\alpha(x)$ of x as

$$\alpha(x) = \liminf_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} a(x_j, x_{j+1}) = \liminf_{n \to \infty} \frac{s_n}{n}.$$

where $s = (s_j)_{j \in \mathbb{Z}}$ is a configuration for x. Let $\alpha(\tilde{x})$ denote the slope of the billiard ball trajectory determined by \tilde{x} for $\tilde{x} \in \Omega$. Set

$$\Omega(a) = \{ \bar{x} \in \Omega \mid \alpha(\bar{x}) = aL \}.$$

If f is an invariant circle in Ω , then $\alpha(\bar{x})$ are constant for all $\bar{x} \in f$, and, therefore, $f \subset \Omega(a)$ for some a with 0 < a < 1. We say that a closed curve f in Ω not null-homotoic is a *circle with constant slope* if $\alpha(\bar{x})$ are constant for all $\bar{x} \in f$.

Theorem 1. Let C be a simple closed convex curve of class C^k , $k \geq 2$, with positive curvature κ and length L. Assume that its convex billiard is integrable. Let a be a real with 0 < a < 1. Then the following are true.

- (1) When a is irrational, $\Omega(a)$ is the invariant circle f with slope aL in Ω such that the graph $G_f(s)$ of $\Omega(a)$ is of class C^1 .
- (2) When a is rational, then the number of the invariant circles with slope aL in Ω is either one or two. If there exists just one invariant circle f with slope aL, then the graph $G_f(s)$ of f is of class C^1 . Otherwise, there exist two closed curves $G_1(s) =$ $(c(s), u_1(s))$ and $G_2(s) = (c(s), u_2(s)), 0 \le s \le i(q)L$, of class C^1 with slope aL which are not null-homotopic where i(q) = 1 + 1 $(1-(-1)^q)/2$ for a=p/q reduced to its lowest terms. Moreover, $G_t(s) = (c(s), \max\{u_1(s), u_2(s)\})$ and $G_b(s) = (c(s), \min\{u_1(s), u_2(s)\})$ $u_2(s)$ }), $0 \le s \le L$, are invariant circles with slope aL.

If an invariant circle f is of class C^1 , then the caustic K made from f is a continuous curve in the domain bounded by C. Here we say that a closed continuous curve K is a *caustic* if K has the following property. Let x_0 be an arbitrary point in C and let $T(x_0, x_1)$ be a segment tangent to K. If $x = (x_j)_{j \in \mathbb{Z}}$ is the billiard ball trajectory determined by $T(x_0, x_1)$, then $T(x_i, x_{i+1})$ is a segment tangent to K for all $i \in \mathbf{Z}$. Without C^2 differentiability condition on C the caustics are not continuous, in general.

2. Foliation by asymptotes and parallels

The contents in this section are based on the results in [2], [3] and [11] and, therefore, we need not to prove the lemmas here again. We work in the configuration space X. Let $s = (s_j)_{i \leq j \leq k}$ be the configuration of a billiard ball trajectory $x = (x_j)_{i \le j \le k}$. We say that $s = (s_j)_{i \le j \le k}$ is a segment from s_i to s_k in **X** if

$$\sum_{j=i}^{k-1} |c(s_{j+1}) - c(s_j)| = \max\left\{\sum_{j=i}^{k-1} |c(t_{j+1}) - c(t_j)|\right\}$$

where $t = (t_j)_{j \in \mathbb{Z}}$ is any configuration such that $t_i = s_i, t_k = s_k$ and $t_j < t_{j+1} < t_j + L$. We say that $s = (s_j)_{j \in \mathbb{Z}}$ is a straight line in X if the restriction of s to the interval i < j < k in \mathbb{Z} is a segment for every $i < k \in \mathbb{Z}$. We say that a straight line s is (positively) asymptotic to a straight line t if the sequences of segments from s_i to t_k converges to the sub-ray $s = (s_j)_{j \ge i}$ of s as $k \longrightarrow \infty$ for every $i \in \mathbb{Z}$. We say that a straight line s is a parallel to a straight line t if the sequences of segments from s_i to t_k converge to the sub-ray $s = (s_j)_{j \ge i}$ and $s = (s_j)_{j \le i}$ of s as $k \longrightarrow \infty$ and $k \longrightarrow -\infty$, respectively, for every $i \in \mathbb{Z}$. In general, the asymptote and parallel relation are not symmetric. A simple modification of the arguments in [11] proves the following.

Lemma 2. Let f be a continuos curve in Ω with its graph $G_f(s) = (c(s), u(s)), s \in [t_0, t_1]$. Assume that the configurations $s(\bar{x})$ for all $\bar{x} \in f$ are straight lines and they are asymptotic to each other. Then, the graph $G_f(s)$ is of class C^1 .

The continuity of the curvature of C plays an important role in the proof of Lemma 2 as was seen in [11]. The situation in Lemma 2 appears in the case of irrational slopes.

Lemma 3. Let a be an irrational number with 0 < a < 1. Let f be a invariant circle in Ω with slope aL. Let $s(\bar{x})$ be the configuration corresponding to $\bar{x} \in f$. Then, all $s(\bar{x})$ are parallels to each other, and, therefore, f is of class C^1 .

Next we treat the case that a is rational. Let a = p/q where p and q are mutually prime integers. In this case there exists a periodic straight line $s = (s_j)_{j \in \mathbb{Z}}$ with period (q, p), i.e., $s_{j+q} = s_j + pL$ for all $j \in \mathbb{Z}$. Let $A \subset \mathbf{R}$ be the set of those parameters s_0 such that $s = (s_j)_{j \in \mathbf{Z}}$ is a periodic straight line with period (q, p) and $B = \mathbf{R} \setminus A$. The set B is either an empty set or a union of open intervals $(b^k, t^k), k \in I$ where I is an index set. If A is a discrete set, then we have $t^k = b^{k+1}$ for all $k \in I$. Let $u^k = (u^k{}_j)_{j \in \mathbb{Z}}$ and $v^k = (v^k{}_j)_{j \in \mathbb{Z}}$ be periodic straight lines with period (q, p) such that $u^k{}_0 = b^k$ and $v^k{}_0 = t^k$. For every $s_0 \in (b^k, t^k) \subset B$ there exists two straight lines with slope aL. One \overline{s} is the positive asymptote to v^k through s_0 and the other \underline{s} is the positive asymptote to u^k through s_0 . Then, \overline{s} and \underline{s} is the negative asymptotes to u^k and v^k through s_0 , respectively. Let $S(u^k, v^k) \subset \mathbf{X}$ be the strip bounded by two straight lines u^k and v^k . We have two foliations $\overline{F}_k = \{\overline{s} \mid s_0 \in (b^k, t^k)\}$ and $\underline{F}_k = \{\underline{s} \mid s_0 \in (b^k, t^k)\}$ of the interior of the strip $S(u^k, v^k)$ by parallels for each $k \in I$. Suppose that $S(u^{k+1}, v^{k+1})$ is next to $S(u^k, v^k)$. Let F_0 be the set of all periodic straight lines with period (q, p) through $s_0 \in A$. Then, each set of straight lines $F_1 = \cdots \cup \underline{F}_{k-1} \cup \overline{F}_k \cup \underline{F}_{k+1} \cup \cdots \cup F_0$ and $F_2 = \cdots \cup \underline{F}_k \cup \underline{F}_{k+1} \cup \cdots \cup F_0$ $\overline{F}_{k-1} \cup \underline{F}_k \cup \overline{F}_{k+1} \cup \cdots \cup F_0$ gives a foliation of **X** by paralleles to each other in the interior of each strip $S(u^k, v^k)$. Moreover, all straight lines in $\overline{F}_k \cup \underline{F}_{k+1}$ are asymptotic to the positive v^k and so to the negative v^k are all straight lines in $\underline{F}_k \cup \overline{F}_{k+1}$ for all $k \in I$. These foliations correspond to closed curves not null homotopic in Ω of class C^1 . The curves cover C in Ω twice if q is odd.

Lemma 4. Let a = p/q be a rational number with 0 < a < 1 where p and q are mutually prime integers. Let $s(\bar{x})$ be the configuration in \mathbf{X} corresponding to $\bar{x} \in \Omega$. If $s(\bar{x})$ are periodic straight lines with period (q, p) for all $\bar{x} \in \Omega(a)$, then $\Omega(a)$ is an invariant circle of class C^1 . Otherwise, there are two foliations of \mathbf{X} which correspond to closed curves not null-homotopic and of class C^1 .

E. Gutkin and A. Katok ([8]) mentions some examples of invariant circles and caustics.

3. Proof of Theorem 1

In this section we prove Theorem 1. When $\Omega(a)$, 0 < a < 1, is an invariant circle f, we have already proved that f is of class C^1 . Suppose $\Omega(a)$ is not an invariant circle. Then, a is a rational number p/q where q and p are mutually prime integers. Let d_j (resp., e_j) be a sequence of irrational numbers with $d_j > a$ (resp., $e_j < a$) converging to a. Then, $\Omega(d_j)$ and $\Omega(e_j)$ converge to subsets G_b and G_t contained in $\Omega(a)$ which are invariant circles. More precisely, $G_b \cup G_t$ is the boundary of $\Omega(a)$ and the configurations $s(\bar{x})$ in \mathbf{X} corresponding to $\bar{x} \in G_b \cap G_t$ are periodic straight lines with period (q, p). Lemma 4 completes the proof of Theorem 1.

References

- E. Y. Amiran. Integrable smooth planar billiards and evolutes. New York J. Math., 3 (1997), 32-47.
- [2] V. Bangert. Mather sets for twist maps and geodesics on tori, In U. Kirchgraber, H. O. Walther (eds.) Dynamics Reported, Vol 1, pp.1–56, John Wiley & Sons and B. G. Teubner, 1988.
- [3] V. Bangert. Geodesic rays, Busemann functions and monotone twist maps, Calc. Var., Vol 2, 49–63 (1994).
- [4] M. Biały. Convex billiards and a theorem of E. Hopf. Math. Z., 214 (1993) 147-154.
- [5] G. D. Birkhoff. Surface translations and their dynamical applications, Acta Math., Vol 43, 1–119 (1922).
- [6] H. Busemann. The geometry of geodesics, Academic Press, New York, 1955.
- [7] L. Green. A theorem of E. Hopf, Michigan Math. J., Vol 5, 31–34 (1958).

- [8] E. Gutkin and A. Katok. Caustics for inner and outer billiards, Commun. Math. Phys., Vol 173, 101–133 (1995).
- [9] E. Hopf. Closed surfaces without conjugate points, Nat. Acad. Sci. U.S.A., 34 (1948) 47-51.
- [10] N. Innami. Integral formulas for polyhedral and spherical billiards, J. Math. Soc. Japan, 50,2 (1998) 339-357.
- [11] N. Innami. Geometry of geodesics for convex billiards and circular billiards. Nihonkai Math. J. 13,1 (2002) 73–120.
- [12] A. Katok and B. Hasselblatt. Introduction to the modern theory of dynamical systems, Cambridge University Press, New York, 1995.
- [13] M. P. Wojtkowski. Two applications of Jacobi fields to the billiard ball problems, J. Diff. Geom., 40 (1994) 155-164.