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Abstract. In this paper we discuss a certain method to construct a family of Lagrangian

submanifolds in a complex projective space CPn+1 from a Lagrangian submanifold in a

complex hyperquadric Qn(C). We use a family of homogeneous isoparametric hypersurfaces

in the unit standard sphere associated to the Riemannian symmetric pair (SO(n+4), SO(2)×
SO(n+ 2)) of rank 2.

Introduction

It is an interesting problem to study the geometric construction of La-
grangian submanifolds in Hermitian symmetric spaces from the viewpoint of
Lie theory. We shall give attention to a relationship among Lagrangian sub-
manifolds in different Hermitian symmetric spaces of compact type.

In this paper we discuss a certain method to construct a family of Lagrangian
submanifolds in a complex projective space CP n+1 from a Lagrangian sub-
manifold in a complex hyperquadric Qn(C). We use a family of homogeneous
isoparametric hypersurfaces in the unit standard sphere S2n+3(1) ⊂ Cn+2 as-
sociated to the Riemannian symmetric pair (SO(n+4), SO(2)×SO(n+2)) of
rank 2. It induces a family of homogeneous isoparametric real hypersurfaces
in a complex projective space CP n+1 whose focal manifolds are Qn(C) and
RP n+1. Such a homogeneous real hypsersurface of a complex projective space
is a tube over Qn(C) and RP n+1 and is called of type B by R. Takagi ([20, 21]).
For each t ∈ (−1, 1), we have the positive focal map ν+ : Mt → Qn(C) and
the negative focal map ν− : Mt → RP n+1. By using the positive focal map
ν+ : Mt → Qn(C), we shall show that for any Lagrangian submanifold L in

Qn(C) we have a family of Lagrangian submanifolds L̂n+1 = ν−1
+ (L) (⊂ Mt)

in CP n+1 for t ∈ (−1, 1). We shall discuss their structure and properties in
detail.

We shall also mention about known results on compact homogeneous La-
grangian submanifolds in complex projective spaces and the Gauss map con-
struction of Lagrangian submanifolds in complex hyperquadrics Qn(C) from

1Key words and phrases: Lagrangian submanifold, complex projective space, Hamiltonian
minimality, isoparametric hypersurface, real hypersurface.
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isoparametric hypersurfaces in Sn+1(1). By applying our result to nice La-
grangian submanifolds in complex hyperquadrics, we can obtain many inter-
esting examples of Lagrangian submanifolds in complex projective space. We
expect that our result provides a link from Lagrangian submanifold theory in
complex hyperquadrics to Lagrangian submanifold thery in complex projective
spaces.

1. Lagrangian submanifolds in Kähler manifolds

A smooth immersion φ : L → P of a smooth manifold L into a 2n-
dimensional symplectic manifold (P, ω) is called a Lagrangian immersion if
φ∗ω = 0 and dimL = n. For each v ∈ (φ−1TP )x = Tφ(x)P , we define αv ∈ T ∗

xL
by αv(X) := ωφ(x)(v, (dφ)x(X)) for each X ∈ TxL. If φ is a Lagrangian im-
mersion, then we have the canonical isomorphisms φ−1TP/φ∗TL ∼= T ∗L and
C∞(φ−1TP/φ∗TL) ∼= Ω1(L). A smooth family of smooth immersions φt : L →
P with φ0 = φ is called a Lagrangian deformation if φt : L → P is a Lagrangian
immersion for each t. A Lagrangian deformation φt : L → P is characterized
by the condition that αVt is closed for each t, where Vt =

∂φt

∂t
∈ C∞(φ−1

t TP )
is the variational vector field of {φt}. If αVt is exact for each t, then we call
{φt} a Hamiltonian deformation of φ.

Suppose that (P, ω, g, J) is a Kähler manifold with a Kähler metric g and
the complex structure J . Let φ : L → P be a Lagrangian immersion. Denote
by B the second fundamental form of φ. We define a symmetric tensor field
S on L by

S(X, Y, Z) := ω(B(X,Y ), Z) = g(JB(X,Y ), Z)

for each X, Y, Z ∈ TL. The mean curvature vector field H of φ is defined by

H :=
n∑

i=1

B(ei, ei),

where {ei} is an orthonormal basis of TxL. The 1-form αH on L corresponding
to the mean curvature vector field H is called the mean curvature form of φ,
which satisfies the identity ([5])

(1.1) dαH = φ∗ρP ,

where ρM denotes the Ricci form of a Käher manifold P .
The notion of Hamiltonian minimality for Lagrangian submanifolds in a

Käher manifold P was introduced and investigated first by Y. G. Oh ([12]).
A Lagrangian immersion φ : L → P into a Käher manifold P is called Hamil-
tonian minimal if for each compactly supported Hamiltonian deformation {φt}
of φ0 = φ the first variation of the volume vanishes:

d

dt
Vol(L,φ∗g)|t=0 = 0 .

The Hamiltonian minimal Lagrangian submanifold equation is

(1.2) δαH = 0.
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The usual minimal submanifold equation H = 0 is equivalent to δαH = 0
and in this case we call φ a minimal Lagrangian immersion. A Hamiltonian
Lagrangian immersion φ : L → P into a Käher manifold P is called Hamil-
tonian stable if for each compactly supported Hamiltonian deformation {φt}
of φ0 = φ the second variation of the volume is nonnegative:

d2

dt2
Vol(L,φ∗g)|t=0 ≥ 0 .

The Lagrangian version of the second variational formula was given in [12].
By considering the second variation of the volume for Hamiltonian mini-

mal Lagrangian submanifolds under Hamiltonian deformations, the notions of
Hamiltonian stability and strict Hamiltonian stability are defined (cf. [12], [8]).

Let G be a connected Lie group acting on P preserving symplectic form
ω. A Lagrangian submanifold L embedded in a symplectic manifold (P, ω)
obtained as an orbit of G is called a Lagrangian orbit of G.

Assume that (P, ω, J, g) is a Kähler manifold and the action of G on P
preserves the Kähler structure (ω, g, J), or G is a connected Lie subgroup of
the automorphism group Aut(P, ω, J, g) of the Kähler structure (ω, g, J). If a
Lagrangian submanifold L embedded in P is obtained as an orbit of G, then
L is called a homogeneous Lagrangian submanifold in a Kähler manifold P .
Moreover if L is compact without boundary, then L is said to be a compact
homogeneous Lagrangian submanifold in a Kähler manifold P . In this case, as
δαH is a constant function on L, by the divergence theorem we have δαH = 0.
Hence we know

Proposition 1.1 ([8]). Any compact homogeneous Lagrangian submanifold in
a Käher manifold is always Hamiltonian minimal.

Suppose that (P, ω, J, g) is a compact Kähler manifold with dimCH
1,1(P,C) =

1 and G is a compact connected Lie subgroup of the automorphism group
Aut(P, ω, J, g). Let GC ⊂ Aut(P, J) be the complexified Lie group of G. Then
the following is a fundamental fact on the existence of compact homogeneous
Lagrangian submanifolds in Kähler manifolds.

Theorem ([4]). If G · x is a Lagrangian orbit of G, then the complexified
orbit GC · x is Stein and Zariski open in P . Conversely if the complexified
orbit GC · x is Stein and Zariski open in P , then GC · x contains a Lagrangian
orbit of G.

2. Lagrangian submanifolds in complex projective spaces

Let Cn+1 be the complex Euclidean space and S2n+1(1) be the unit standard
hypersphere of Cn+1 ∼= R2n+2. Let π : S2n+1(1) → CP n be the standard Hopf
fibration over the n-dimensional complex projective space CP n equipped with
the standard Fubini-Study metric of constant holomorphic sectional curvature
4. Note that the standard S1-action on S2n+1(1) preserves the induced metrics.
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and π : S2n+1(1) → CP n is a Riemannian submersion. The energy function
f : Cn+1 → R defined by f(x) := ∥x∥2 (x ∈ Cn+1) can be considered as a
Hamiltonian function or a moment map with respect to the standard S1-action
on Cn+1. Since f 1 = S2n+1(1) and f 1/S1 = CP n, the complex projective space
CP n is a symplectic Kähler quotient of Cn+1 by the moment map f . Then we
know the following properties (cf. [6]):

Proposition 2.1. Let L be a submanifold (immersed) in CP n. Then

(1) L is a Lagrangian submanifold (immersed) in CP n if and only if the
inverse image L̃ = π−1(L)(⊂ S2n+1(1)) by the Hopf fibration π is a
Lagrangian submanifold (immersed) in Cn+1.

(2) L is a Hamiltonian minimal in CP n if and only if L̃ = π−1(L) (⊂
S2n+1(1)) is Hamiltonian minimal in Cn+1.

⊂ S2n+1(1) = f−1(1) ⊂ Cn+1

π

CP n = f−1(1)/S1

L̃n+1 = π−1(L)

?
S1π

?
Ln ⊂

S1

We mention about known results on the construction and classification of
compact homogeneous Lagrangian submanifolds in complex projective spaces.
In the case when L has parallel second fundamental form, that is, ∇S =
0, π−1(L) also has parallel second fundamental form in both S2n+1(1) and
Cn+1. Such Lagrangian submanifolds with ∇S = 0 in complex space forms
were completely classified by Professors Hiroo Naitoh and Mararu Takeuchi
in 1980’s by theory of symmetric R-spaces (of type U(r)) and in particular
they showed that any Lagrangian submanifolds with ∇S = 0 in a complex
space form is homogeneous. Compact Lagrangian submanifolds with ∇S = 0
embedded in complex projective spaces and complex Euclidean spaces are
strictly Hamiltonian stable (Amarzaya-Ohnita [1], [2]).

There are many examples of compact homogeneous Lagrangian subman-
ifolds with ∇S ̸= 0 embedded in complex projective spaces and complex
Euclidean spaces. The simplest non-trivial example can be given by a 3-
dimensional minimal Lagrangian orbit in CP 2 under an irreducible unitary
representation of SU(2) of degree 3 (cf. [3], [13]).

Bedulli-Gori ([4]) classified compact homogeneous Lagrangian submanifolds
in complex projective spaces obtained as orbits of simple compact Lie groups
of PU(n + 1). It is a crucial to use Theorem and theory of prehomogeneous
vector spaces due to Professors Mikio Sato and Tatsuo Kimura. It is still an
open problem to classify compact homogeneous Lagrangian submanifolds in
CP n obtained as orbits of non-simple compact Lie groups of PU(n + 1) (See
also [19]).
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3. Lagrangian submanifolds in complex hyperquadrics and
hypersurface geometry in spheres

Let Nn be an oriented hypersurface immersed in the unit standard sphere
Sn+1(1). Let x(p) denote the position vector of a point p ∈ Nn and n(p) denote
the unit normal vector at p ∈ Nn in Sn+1(1). The Gauss map G : Nn → Qn(C)
of the oriented hypersurface Nn ⊂ Sn+1(1) is defined by

(3.1) G : Nn ∋ p 7−→ [x(p)+
√
−1n(p)] = x(p)∧n(p) ∈ Qn(C) = G̃r2(Rn+2).

It is well-known that the Gauss map G : Nn → Qn(C) is always a Lagrangian
immersion.

We shall assume thatNn is an oriented isoparametric hypersurface immersed
in the unit standard sphere Sn+1(1), that is, a hypersurface with g distinct
constant principal curvatures.

In general, an isoparametric hypersurface on a Riemannian manifold M is
defined as a regular level hypersurface of an isoparametric function. A smooth
function f is called an isoparametric function on a Riemannian manifold M if
f satisfies the system of partial differential equations:

(3.2) ∆Mf = a(f), ∥gradf∥2 = b(f),

where a is a continuous function and b is a function of class C2. It is well-
known that each regular level hypersurface of an isoparametric function has
constant mean curvature. Elie Cartan showed that a hypersurface immersed in
real space forms is an isoparametric hypersurface if and only if it has constant
principal curvatures. Let Nn be an isoparametric hypersurface in the standard
hypersphere Sn+1(1) ⊂ Rn+2 with g distinct principal curvatures k1 > k2 >
· · · > kg and the corresponding multiplicities mα (α = 1, · · · , g). We express
the principal curvatures k1 > k2 > · · · > kg as kα = cot θα (α = 1, · · · , g) with
θ1 < · · · < θg. Münzner ([10]) showed that θα = θ1+(α− 1)π

g
and mα = mα+2

indexed modulo g. Moreover he proved that Nn extends to a regular level
hypersurface f−1(t) for some t ∈ (−1, 1) defined by an isoparametric function
f : Sn+1(1) → [−1, 1] which is a restriction of a homogeneous polynomial F of
degree g satisfying

(3.3) ∆Rn+2

F = c rg−2, ∥gradRn+2

F∥2 = g2 r2g−2,

where r =
∑n+2

i=1 (xi)
2 and c = g2(m2 −m1)/2.　Here the isoparametric func-

tion f is defined in a neighborhood of Nn as

(3.4) t = f(q) = cos(gθ(q)) = cos(gθ1),

where θ(q) := θ1 for the maximal principal curvature k1 = cot θ1 of f−1(q).
Such a homogeneous polynomial is called the Cartan-Münzner polynomial. His
famous result is that g must be 1, 2, 3, 4 or 6 ([11]) .

Let k1 > · · · > kg denote its distinct constant principal curvatures and
m1, · · · ,mg the corresponding multiplicities. Münzner ([10]) showed that θα =
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θ1 + (α− 1)π
g
and mα = mα+2 indexed modulo g. Hence we have

(3.5)
2n

g
=

{
m1 +m2 if g ≥ 2,

2m1 if g = 1.

The famous result of Münzner is that g must be 1, 2, 3, 4 or 6 ([10], [11]).
The Lagrangian immersions G and the Gauss image G(Nn) have the follow-

ing properties. It follows from the mean curvature form formula of Palmer
([18]) that

Proposition 3.1 ([18]). The Gauss map G : Nn → Qn(C) is a minimal
Lagrangian immersion.

Proposition 3.2 ([7], [14]). The Gauss image G(Nn) is a compact smooth
minimal Lagrangian submanifold embedded in Qn(C) and the Gauss map G :
Nn → G(Nn) is a covering map with the deck transformation group Zg. More-
over, G(Nn) is a monotone and cyclic Lagrangian submanifold in Qn(C) with
minimal Maslov number

2n

g
. Here

2n

g
is even if and only if G(Nn) is ori-

entable.

In [7] we classified explicitly all compact homogeneous Lagrangian subman-
ifolds in Qn(C). In particular we showed that all compact homogeneous min-
imal Lagrangian submanifolds in Qn(C) are obtained as the Guass images of
homogeneous isoparametric hypersurfaces in Sn+1(1).

Palmer ([18]) showed that G : Nn → Qn(C) is Hamiltonian stable if and
only if g = 1, that is, Nn is a great or small sphere of Sn+1(1). By my joint
works [7], [9] with Hui Ma, we completely determined the strict Hamiltonian
stability of the Gauss images G(Nn) of all homogeneous isoparametric hyper-
surfaces Nn in Sn+1(1). Our main result was that the Gauss image G(Nn)
of homogeneous isoparametric hypersurfaces Nn is Hamiltonian stable if and
only if |m1 −m2| ≤ 2 or Nn is a principal orbit of the isotropy representation
of the Riemannian symmetric pair of type EIII (in this case (m1,m2) = (6, 9)).

4. Construction of a family of Lagrangian submanifolds in
CP n+1 from an arbitrary Lagrangian submanifold in Qn(C)

First we recall the structure of tubes Mt (t ∈ (−1, 1)) over a complex hyper-
quadric Qn(C) (= M1 = M+) in CP n+1. They are also tubes Mt (t ∈ (−1, 1))
over a real projective subspace RP n (= M−1 = M−) in CP n+1 at the same
time. The tube Mt is a real hypersurface embedded in CP n+1, which is a ho-
mogeneous isoparametric real hypersurface of CP n+1 and its focal manifolds
are Qn(C) and RP n. Let ν denote the unit normal vector field to Mt in CP n+1.
The focal maps from Mt to focal manifolds are defined by using geodesics of
CP n+1 normal to Mt. Let ν+ : Mt → Qn(C) denote the positive focal map
from Mt onto Qn(C) and ν− : Mt → RP n the negative focal map from Mt onto
RP n:
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CP n+1

∪
=

Mt
ν+ν−� -

CP n+1 = CP n+1

∪
M−1 = RP n+1 Qn(C) = M1

∪

The homogeneous isoparametric real hypersurfaces Mt in CP n+1 are obtained
as the projection of homogeneous isoparametric real hypersurfaces M̃t in S2n+3(1)
by the Hopf fibration π : S2n+3(1) → CP n+1. Let (G̃, Ũ) = (SO(n+4), SO(2)×
SO(n + 2)) be a compact rank 2 Riemannian symmetric pair of type BDII2.
Let g̃ = ũ+ p̃ be the corresponding canonical decomposition of its symmetric
Lie algebra, where g̃ = o(n+ 4), ũ = o(2)⊕ o(n+ 2) and the vector subspace
p̃ is

p̃ =

{[
0 ξ

−ξt 0

]
| ξ ∈ M(2, n+ 2;R)

}
.

HereM(2, n+2;R) denotes the vector space of all real 2×(n+2)-matrices. The
standard complex structure J̃ of p̃ invariant under the isotropy representation
of Ũ is given by

J

([
0 ξ

−ξt 0

])
=Adp̃

0 −1 0
1 0 0
0 0 0

([ 0 ξ
−ξt 0

])

=

 0

[
0 −1
1 0

]
ξ

−ξt
[
0 −1
1 0

]t
0

 .

Relative to the standard complex structure, the vector subspace p̃ is identified
with

M(2, n+ 2;R) ∼= R2n+4 ∼= Cn+2.

In particular, the standard S1-action on Cn+2 coincides with the isotropy action
of SO(2)× {In+2} ⊂ SO(2)× SO(n+ 2) on p̃.

Let S2n+3(1) ⊂ p̃ denote the unit standard hypersphere of p̃. Each principal
orbit of SO(2)× SO(n+ 2) on S2n+3(1) is of codimension 1. Thus we have a
family {M̃t} of homogeneous hypersurfaces of S2n+3(1) with constant principal
curvatures, which is a family of so-called isoparametric hypersurfaces. Each
Mt has g = 4 distinct principal curvatures and multiplicities (m1,m2) = (1, n).

Let f̃ : S2n+3(1) → [−1, 1] ⊂ R be such an isoparametric function defining
{M̃t} and F : Cn+2 → R denote the corresponding Cartan-Münzner poly-

nomial of degree 4 so that F |S2n+3(1) = f̃ . Explicitly the Cartan-Münzner
polynomial F is given as follows ([17]):

F (Z) =
3

4
(Tr(Z2))2 − 2Tr(Z4)

for each Z ∈ p̃, in other words

F = r4 − 2F0 ,
7



where the functions r and F are defined as

r(ξ) :=

(
n+2∑
i=1

|ξi|2
) 1

2

, F0(ξ) :=

∣∣∣∣∣
n+2∑
i=1

ξ2i

∣∣∣∣∣
2

=

(
n+2∑
i=1

ξ2i

)(
n+2∑
i=1

ξ2i

)

for each ξ =

 ξ1
...

ξn+2

 ∈ Cn+2.

Set M̃t := f̃−1(t) for each t ∈ [−1, 1] and M̃± := M̃±1. Then for each t ∈
(−1, 1) the level regular hypersurface M̃t is a compact homogeneous isopara-
metric hypersurface embedded in S2n+3(1) which is diffeomorphic to a compact

homogeneous space
SO(2)× SO(n+ 2)

Z2 × SO(n)
. For t = ±1, M̃± are focal manifolds

which are compact minimal submanifolds embedded in S2n+3(1). A focal mani-

fold M̃+ is diffeomorphic to a compact homogeneous space
SO(2)× SO(n+ 2)

SO(2)× SO(n)
and another focal manifold M̃− is diffeomorphic to a compact homogeneous

space
SO(2)× SO(n+ 2)

O(n+ 1)
(∼= S1 · Sn+1 ∼= Q2,n+2(R) a real hyperquadric).

Let t ∈ (−1, 1) and set M̃ = M̃t. Let k1 > k2 > k3 > k4 be four distinct
principal curvatures ofM in S2n+3(1). Recall that k1 = cot θ1 and t = cos(4θ1).

Denote by x the position vector of points on M̃ and by n :=
gradf̃

∥gradf̃∥
the unit

normal vector to M̃ in S2n+3(1). Let An denotes the shape operator of M̃
in S2n+3(1) in the direction of n. The principal curvatures are nothing but
eigenvalues of An. For each p ∈ M̃ , we express the eigenspace decomposition
of the tangent vector space TpM̃ corresponding to the four constant principal
curvatures as follows:

TpM̃ = Ṽ1(p)⊕ Ṽ2(p)⊕ Ṽ3(p)⊕ Ṽ4(p)

=R Jx(p)⊕ R Jn(p)⊕ Ṽ2(p)⊕ J(Ṽ2(p)),

where Ṽ1(p) = R(−k3Jx(p) + Jn(p)), Ṽ3 = R(−k1Jx(p) + Jn(p)), Ṽ4(p) =
J(Ṽ2(p)).

The positive focal map ν̃+ : M̃t → M̃+ is defined by

ν̃+(p) := cos θ1 x(p) + sin θ1 n(p) ∈ M̃+

for each p ∈ M̃t. The differential of the positive focal map ν̃+ is given as

(dν̃+)p(X) = cos θ1X − sin θ1An(X)

=(cos θ1 I − sin θ1An)(X)
8



for each X ∈ TpM̃ . If X ∈ Ṽi(p) (i = 1, 2, 3, 4), then we have

(dν̃+)p(X) =(cos θ1 − sin θ1 ki)(X)

=(cos θ1 − sin θ1 cot θi)(X)

=
sin(θi − θ1)

sin θi
X.

Note that

sin(θi − θ1)

sin θi
=



0 if θi = θ1.
1√

2 sin θ2
=

1

cos θ1 + sin θ1
if θi = θ2.

1

sin θ3
=

1

cos θ1
if θi = θ3.

1√
2 sin θ4

=
1√

2 cos θ2
=

1

cos θ1 − sin θ1
if θi = θ4.

The positive focal map ν̃+ : M̃t → M̃+ is an SO(2)×SO(n+2)-equivariant
submersion

ν+ : M̃t =
SO(2)× SO(n+ 2)

Z2 × SO(n)
−→ M̃+ =

SO(2)× SO(n+ 2)

SO(2)× SO(n)

∼=
SO(n+ 2)

SO(n)
∼= V2(Rn+2)

with fiber
SO(2)× SO(n)

Z2 × SO(n)
∼=

SO(2)

Z2

∼= S1. Here V2(Rn+2) denotes the Stiefel

manifold of all pairs of two orthonormal vectors in Rn+2. Note that this map
ν̃+ : M̃t → M̃+ is not a Riemannian submersion.

Let π : S2n+3(1) → CP n+1 be the Hopf fibration with the S1 ∼= SO(2)-

action. Since the isoparametric function f̃ on S2n+3(1) is invariant under the
S1 ∼= SO(2)-action, a smooth function f : CP n+1 → [−1, 1] ⊂ R can be

induced by f ◦ π = f̃ . Then f is an isoparametric function on CP n+1.
Set Mt := f−1(t) for each t ∈ [−1, 1] and M± := M±1. Then for each

t ∈ (−1, 1) the subset Mt is the level regular hypersurface, and is a com-
pact homogeneous isoparametric hypersurface embedded in CP n+1 which is

diffeomorphic to
SO(n+ 2)

Z2 × SO(n)
. The subsets M± are focal manifolds which are

compact minimal submanifolds embedded in CP n+1. The subset M+ is a com-

plex hyperquadric Qn(C) in CP n+1 which is diffeomorphic to
SO(n+ 2)

SO(2)× SO(n)
and the subset M− is a real projective subspace RP n+1 in CP n+1 which is

diffeomorphic to
SO(n+ 2)

SO(1)× SO(n+ 1)
.

Each Mt (t ∈ (−1, 1)) is a homogeneous isoparametric real hypersurface in
CP n+1 with three distinct constant principal curvatures

(4.1) ℓ1 = −2 tan 2θ1, ℓ2 = cot θ1, ℓ3 = − tan θ1,
9



and the corresponding multiplicities

(4.2) m(ℓ1) = 1, m(ℓ2) = n, m(ℓ3) = n.

It is called a homogeneous real hypersurface of type B ([20, 21]). The vector

field ν :=
gradf

∥gradf∥
is a unit normal vector field on each Mt (t ∈ (−1, 1)) and

Aν denotes the shape operator of Mt in the direction of ν. For each x ∈ Mt, we
express the eigenspace decomposition of TxMt corresponding to three principal
curvatures ℓ1, ℓ2, ℓ3 as follows:

(4.3) TxMt = V1(x)⊕ V2(x)⊕ V3(x)

where V1(x) = R Jν(x), V2(x) = J(V3(x)).
Now we have a commutative diagram of positive focal maps and Hopf fibra-

tions as follows:
Cn+2

∪
S2n+3(1)
∪

=

M̃+
ν̃+-

M+

=Cn+2

∪
S2n+3(1)
∪
M̃t

π
?
S1π

?
S1

Mt

ν+-
∩
CP n+1

∩
CP n+1

∩
CP n+1=

Here

M̃t = π−1(Mt) ∼=
SO(2)× SO(n+ 2)

Z2 × SO(n)
(t ∈ (−1, 1)),

M̃+ = π−1(M+) ∼=
SO(2)× SO(n+ 2)

SO(2)× SO(n)
∼=

SO(n+ 2)

SO(n)
∼= V2(Rn+2),

M̃− = π−1(M−) ∼=
SO(2)× SO(n+ 2)

O(n+ 1)
∼= S1 · Sn+1 ∼= Q2,n+2(R),

and

Mt = π(M̃t) ∼=
SO(n+ 2)

Z2 × SO(n)
(t ∈ (−1, 1)),

M+ = π(M̃+) ∼=
SO(n+ 2)

SO(2)× SO(n)
∼= Qn(C),

M− = π(M̃−) ∼=
SO(n+ 2)

S(O(1)×O(n+ 1))
∼= RP n+1.
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Under a surjective linear map (dπ)p : TpM̃t → TpMt, we have

Ker((dπ)p) = R Jx(p) ⊂ Ṽ1(p)⊕ Ṽ3(p) = R Jx(p) ⊕ R Jn(p),

(dπ)p(Ṽ1(p)⊕ Ṽ3(p)) = V1(p),

(dπ)p(Ṽ2(p)) = V2(p), (dπ)p(Ṽ4(p)) = V3(p).

The positive focal map ν+ : Mt → M+ is an SO(n+2)-equivariant submersion

ν+ : Mt
∼=

SO(n+ 2)

Z2 × SO(n)
−→ M+ = Qn(C) ∼=

SO(n+ 2)

SO(2)× SO(n)
.

Note that It is not a Riemannian submersion and the Reeb flow of a real
hypersurface Mt as an almost contact metric manifold is not isometric.

We observe that the differential of the positive focal map ν+ has kernel
Ker(dν+) = V1. Let ωQn(C) denote the Kähler form of Qn(C) ⊂ CP n+1. Then
a relation between the pull-back form of ωQn(C) by ν+ and the restriction of
the Kähler form ω of CP n+1 to Mt is given as follows:

Lemma 4.1.

(4.4) ν∗
+ωQn(C) =

1

cos(2θ1)
ω|Mt .

Here note that cos(2θ1) ̸= 0.
The vector field J(gradf) on CP n+1 satisfies

ω(J(gradf), ·) = g(gradf, ·) = −df,

and hence it is a Hamiltonian vector field X−f on CP n+1 corresponding to the
Hamiltonian −f . For each t ∈ (−1, 1), the flow of a Hamiltonian vector field
X−f preserves the level set f−1(t) = Mt and X−f |Mt = J(gradf) = ∥gradf∥ Jν
belongs to V1 ⊂ TMt. Note that ∥gradf∥ is constant on Mt. Hence we see
that the vector field X−f |Mt generates the S1-action on Mt and the orbits of
the S1-action coincide with the fibers of the positive focal map ν+ : Mt → M+.
Therefore M+ = Qn(C) is regarded as a symplectic quotient f−1(t)/S1, but
which is not a Kähler quotient, because the S1-action on Mt is not isometric.

⊂ CP n+1Mt

(
∼= SO(n+2)

Z2×SO(n)

)
= f−1(t)

?
ν+

M+ = Qn(C)
(
∼= SO(n+2)

SO(2)×SO(n)

)
= f−1(t)/S1

S1 (∼= SO(2)/Z2)

Lemma 4.1 gives the relation between the push-forward symplectic form (ν+)∗ω
on the symplectic quotient f−1(t)/S1 and the original Kähler form ωQn(C) of
Qn(C).

The positive focal map ν+ : Mt → M+ = Qn(C) can be considered as a
principle fiber bundle with structure group S1 over Qn(C). We define a 1-form
αν on Mt by

(4.5) αν(X) := ω(ν,X) = g(Jν,X)
11



for each X ∈ TMt. The 1-form αν satisfies

(4.6) (∇Xαν)(Y ) = g(Aν(X), JY )

for each X, Y ∈ TMt. Hence the exterior derivative of αν is

(dαν)(X,Y ) =(∇Xαν)(Y )− (∇Y αν)(X)

=g(Aν(X), JY )− g(Aν(Y ), JX)

=− ω(Aν(X), Y ) + ω(Aν(Y ), X)

(4.7)

for each X, Y ∈ TMt. Hence by using (4.1), (4.3), we have a formula

Lemma 4.2.

(4.8) dαν = −2 tan(2θ1)ω|Mt .

The principal S1-bundle ν+ : Mt → M+ = Qn(C) has a connection invariant
under the left group action of SO(n+2) whose horizontal subspaces are defined
by (Jν)⊥ = V2⊕V4 = V2⊕ J(V2). Then Lemma 4.2 means that its connection
form is αν and its connection form is −2 tan(2θ1)ω|Mt . Moreover, by using
Lemma 4.1 we have

(4.9) dαν = −2 tan(2θ1) cos(2θ1) ν
∗
+ωQn(C) = −2 sin(2θ1) ν

∗
+ωQn(C).

Note that sin(2θ1) ̸= 0.
Let φ : L → Qn(C) be a Lagrangian immersion of an n-dimensional smooth

manifold Ln into an n-dimensional complex hyperquadric Qn(C). Then we

take a pull-back S1-bundle L̂n+1 = φ−1Mt by φ over L as

-̂φt Mt = f−1(t) ⊂ CP n+1

ν+

M+ = Qn(C) ⊂ CP n+1

L̂n+1 = φ−1Mt

?
S1ν+

?
Ln -φ

S1

Since φ is a Lagrangian immersion, i.e. φ∗ωQn(C) = 0, by Lemma 4.1 φ̂∗
tω =

cos(2θ1) φ̂
∗
tν

∗
+ωQn(C) = cos(2θ1) ν

∗
+φ

∗ωQn(C) = 0 and hence φ̂t : L
n → CP n+1 is

also a Lagrangian immersion. Moreover, ν+ : L̂n+1 = φ−1Mt → Ln is also a
principal S1-bundle over Ln and the pull-back connection is flat.

Theorem . If φ : L → Qn(C) is a Lagrangian immersion into an n-dimensional
complex hyperquadric, then we have a family of Lagrangian immersions φ̂t :
L̂ = φ−1Mt → (Mt ⊂)CP n+1 (t ∈ (−1, 1)) into an (n + 1)-dimensional com-
plex projective space.

Remark 1. The infinitesimal Lagrangian deformation given by the above family
corresponds to the closed 1-form φ̂∗

tαν .

Remark 2. If we take the Gauss images of compact isoparametric hypersurfaces
in Sn+1(1) as Ln ⊂ Qn(C), then by this theorem we obtain a class of compact
Lagrangian submanifolds ν∗

+(L
n) (⊂ Mt) in CP n+1 related to isoparametric

hypersurfaces. If we take compact homogeneous Lagrangian submanifolds as
12



Ln ⊂ Qn(C), then by this theorem we obtain a class of compact Lagrangian
orbits in CP n+1 which are not necessarily homogeneous in our sense.

We shall discuss the case when Ln = Sn ⊂ Qn(C) is a totally geodesic
Lagrangian submanifold which is one of real forms in Qn(C). It also coincides
with the Gauss image of a compact isoparametric hypersurface with g = 1 in
Sn+1(1) (i.e. a great or small hypersphere of Sn+1(1)) in Section 4.

⊂ Mt = f−1(t) ⊂ CP n+1

ν+

M+ = Qn(C) ⊂ CP n+1

L̃n+1 = (ν+)
−1(Sn)

?
S1ν+

?
Ln = Sn ⊂

S1

In this case by direct computations we obtain

Theorem . If Ln = Sn ⊂ Qn(C), then then we have a family of compact

Lagrangian submanifolds L̂n+1
t = (ν+)

−1(Sn) (⊂ Mt) (t ∈ (−1, 1)) embedded in
CP n+1 with the following properties:

(1) L̂n+1
t is diffeomorphic but not isometric to the Riemannian product Sn×

S1:

L̂n+1
t = ν−1

+ (Sn) ∼=
SO(n+ 1)

SO(n)
· (SO(2)× {In}) ∼= Sn × S1 .

(2) L̂n+1
t is a compact Lagrangian orbit of SO(n + 1)× R1 but not homo-

geneous in the sense of Section 2. Here R1 denotes the flow on CP n+1

generated by the vector field J(gradf).

(3) L̂n+1
t is not Hamiltonian minimal.

Remark 3. L̂n+1
t is isometric to a warped product S1×ρS

n for a smooth function
ρ(γ) = cos2 γ cos2 θ1 + sin2 γ sin2 θ1 on S1.

Finally we remark that the argument of this paper works also in the following
other homogeneous isoparametric families:
(1) Construction from Lagrangian submanifold in Qn(C) to Lagrangian sub-
manifolds in Qn+1(C):

Qn+1(C)
∪

=

Mt
ν+ν−� -

Qn+1(C) = Qn+1(C)
∪

M−1 = Sn+1 Qn(C) = M1

∪

(2) Construction from Lagrangian submanifold in CP n to Lagrangian subman-
ifolds in CP n+1:

CP n+1

∪
=

Mt
ν+ν−� -

CP n+1 = CP n+1

∪
M−1 = {a point} CP n = M1

∪

13
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215–232.

[12] Y. G. Oh, Volume minimization of Lagrangian submanifolds under Hamiltonian de-
formations, Math. Z. 212 (1993), 175-192.

[13] Y. Ohnita, Stability and rigidity of special Lagrangian cones over certain minimal
Legendrian orbits, Osaka J. Math. 44 (2007), 305-334.

[14] Y. Ohnita, Geometry of Lagrangian Submanifolds and Isoparametric Hypersurfaces,
Proceedings of The Fourteenth International Workshop on Differential Geometry, 14
(2010), pp 43-67, NIMS, KMS and GRG. (OCAMI Preprint Ser. no.10-9.)

[15] Y. Ohnita, Certain Lagrangian submanifolds in Hermitian symmetric spaces and
Hamiltonian stability problems, Proceedings of The Fifteenth International Workshop
on Differential Geometry, 15 (2011), pp 209-234, ed. by Y.-J. Suh, NIMS, KMS and
GRG. (OCAMI Preprint Ser. no.11-14).

[16] H. Ozeki and M. Takeuchi, On some types of isoparametric hypersurfaces in spheres
I. Tohoku Math. J.(2) 27 (1975), 515–559.

[17] H. Ozeki and M. Takeuchi, On some types of isoparametric hypersurfaces in spheres
II. Tohoku Math. J.(2) 28 (1976), 7–55.

14



[18] B. Palmer, Hamiltonian minimality of Hamiltonian stability of Gauss maps,
Diff. Geom. and its Appl. 7 (1997), 51–58.

[19] D. Petrecca and F. Podesta, Construction of homogeneous Lagrangian submanifolds
in CP n and Hamiltonian stability, Tohoku Math. J.(2) 64 (2012), 261–268.

[20] R. Takagi, Real hypersurfaces in a complex projective space with constant principal
curvatures. J. Math. Soc. Japan 27 no. 4 (1975), 43–53.

[21] R. Takagi, Real hypersurfaces in a complex projective space with constant principal
curvatures II. J. Math. Soc. Japan 27 no. 4 (1975), 507–516.

Department of Mathematics, Osaka City University, & Osaka City Univer-
sity Advanced Mathematical Institute, Sugimoto, Sumiyoshi-ku, Osaka, 558-
8585, JAPAN

E-mail address: ohnita@sci.osaka-cu.ac.jp

15


