斜材を有する免震架台接合部の構造性能評価

栗田研究室

4107027 加藤木 直之

1. はじめに

木造住宅の免震化に際して、経済性・施工性の観点か ら免震架台の木造化が注目されている。しかし、木造架 台が十分な水平構面剛性を有しているか不明であり、架 台の構造形式に則した性能評価が求められる。過去に本 研究^{1),2)}では、斜材を有する木造架台の性能評価を、実験 と解析により検証してきた。特に斜材接合部の剛性評価 に着目し、要素実験や材料実験を行ってきたが、未だ実 験結果を適切に説明するには至っていない。そこで本論 文では、新たに行った実験結果の分析の追加と修正解析 による実験結果の追跡を目的とする。

2. 静的水平加力実験

2.1 試験体概要及び測定計画

架台接合部試験体の設置図を示す(図 1)。試験体は加 力柱、土台、斜材により構成され、斜材断面の違いによ って2種類の試験体(S-1・S-2)を用意した。各試験体の 斜材断面は、S-1が120×50[mm]、S-2が90×50[mm]、S-1は既往研究¹⁾で使用した試験体と同じものである。

測定は、加力部荷重と加力柱水平変位、土台鉛直変位、 各部材のひずみ計測を行った。測定概要を図1に示す。

2.2 荷重一変形関係

試験体 S-1、S-2 の荷重-変形関係を図 2 に示す。なお 試験体の水平変位は式(1)により算出した真のせん断変形 H_声によって評価している。

(1)

$H_{\pm} = (H1 - H2) - (V3 - V4)$

図 2 から、正載荷時は非線形的な挙動を示し、負載荷時については概ね線形的な挙動を示している。試験体 S-1、S-2 ともに、正載荷時 6[kN]付近にて発生した加力柱の曲げ破壊により実験を終了している。図 3 に実験終了時の 全体写真と加力柱折損部の拡大写真を示した。

2.3 斜材応力図

図4 に各試験体における斜材応力図を示す。応力は載 載荷・負載荷における最大荷重時の部材ひずみから算定 した。このとき正載荷時は斜材に貼ったひずみゲージか ら算定し、負載荷時には斜材及び加力柱と接合金物また ボルトに貼ったひずみゲージから算出する。

2.4 斜材端部における応力状態

本実験では斜材端部における応力状態を確認するため 図5に示すように歪ゲージを配置する。図5(a)、(b)に S-2の正載荷・負載荷時における斜材上端部の応力状態を 示した。斜材上端からは圧縮-引張と応力が変化してい ることから、斜材が回転を伴っためり込みが生じている ことが読み取れる。

図 6 加力柱の斜材付近における応力状態の例(S-2)

3. 解析による実験結果の追跡

実験結果を解析により説明する。解析モデルは斜材に 軸力と曲げモーメントが生じることや、斜材が加力部 材・支持部材に対してめり込みが生じることから、接合 部で生じる変形をめり込みによるものと仮定し、図7に 示すような斜材両端を軸ばねと回転ばねに置換したもの とする。

3.1 軸ばね・回転ばね剛性の算出

斜材端部でのめり込みによる軸力-軸変位関係を軸ばね 要素とし、モーメント-回転角関係を回転ばね要素とする。 軸変位と回転角の算出方法を図 8 に示し、図 9 に軸ばね 剛性と回転ばね剛性の算出方法を示す。ばね剛性は軸力 一軸変位関係、モーメントー回転角関係を線形近似した ものの傾きから算出する。表 1 に算出した軸ばね、回転 ばね剛性を示す。正載荷時には斜材端部に軸変形が生じ ていなかったため、回転ばねのみとした。

3.2 実験結果と解析結果の荷重 - 変形関係の比較

図 10 に実験結果と解析結果の荷重変形関係を示す。試 験体 S-1、S-2 ともに負載荷時については完全な再現には 至らなかった。正載荷時については剛性が低下した非線 形部分を再現することが出来ず、過大評価する結果とな った。実験結果から得た接合部での変形を、図 9 で示し たように弾性ばねで置換できることから、再現に及ばな かった非線形部分については接合部のめり込みによるも のではなく加力柱の材料特性による影響が大きいものと 考えられる。

4. 過去の実験結果との比較

今回の実験結果と過去の実験結果を比較する。表 2 に 過去と今回の実験結果の比較を示す。ここで剛性は正載 荷時、負載荷時における最大荷重時の割線剛性で評価す る。過去の実験結果は S-1 の試験体 2 体(S1-1、S1-2)であ り、今回の実験では S-1 を 1 体(S1-3)、S-2 の試験体 3 体 (S2-1、S2-2、S2-3)の実験結果を得た。今回の実験で使用 した S1-3 の負載荷時の剛性は、過去の実験で使用した試 験体 S1-1、S1-2 の剛性よりも小さかったことが分かる。 また S-1 と S-2 に試験体の形状に違いはあるが、荷重変形 関係には同様の傾向が見られた。

5. まとめ

本研究では接合部性能に関する知見を実験と解析により把握した。本研究により得られた知見を以下に示す。1) 斜材は軸力と曲げを同時に受ける応力状態となった。2)斜 材端部における応力状態から、斜材が回転を伴ってめり 込みを生じていることが確認できた。3)実験結果から作成 した接合部剛性を付加した解析モデルでは、未だ実験結 果を完全に説明するには至らなかった。4)今後部材におけ る材料特性の非線形性を考慮する必要がある。

参考文献

1) 上村徹:「木造架台を用いた戸建免震住宅の設計方法に関する研究」

2) 上村徹*:「戸建免震住宅の木造架台の剛性評価に関する基礎的研究」

表-1 軸ばね剛性と回転ばね剛性

	S-1				S-2			
	軸ばね		回転ばね		軸ばね		回転ばね	
	上端	下端	上端	下端	上端	下端	上端	下端
正載荷時	_	-	9.77×10^{3}	2.29×10 ³	-	-	6.86×10 ³	1.68×10^{4}
負載荷時	3.30	3.59	6.11×10^{2}	8.99×10^{2}	6.53	6.83	3.99×10 ²	7.91×10 ²

単位:軸ばね[kN/mm]回転ばね[kN·mm/rad.] -:軸変形が生じていない場合

表2 各試験体の剛性の比較

]		S1-1			S1-2		S1-3		
	最大荷重	最大変位	剛性	最大荷重	最大変位	剛性	最大荷重	最大変位	剛性
正載荷時	6.44	2.45	2.67	6.8	2.01	3.38	6.67	2.33	2.86
負載荷時	-4.11	-3.8	1.08	-3.72	-4.17	0.891	-1.58	-4.89	0.323
	S2-1			S2-2			S2-3		
		S2-1			S2-2			S2-3	
	最大荷重	S2-1 最大変位	剛性	最大荷重	S2-2 最大変位	剛性	最大荷重	S2-3 最大変位	剛性
正載荷時	最大荷重 5.8	S2-1 最大変位 2.38	剛性 2.44	最大荷重 6.13	S2-2 最大変位 1.94	剛性 3.16	最大荷重 5.74	S2-3 最大変位 2.24	剛性 2.56
正載荷時 負載荷時	最大荷重 5.8 -4.62	S2-1 最大変位 2.38 -5.3	剛性 2.44 0.872	<u>最大荷重</u> 6.13 -3.27	S2-2 最大変位 1.94 -3.93	<u>剛性</u> 3.16 0.83	最大荷重 5.74 -2.98	S2-3 最大変位 2.24 -4.93	剛性 2.56 0.604