地震記録に基づく立体振動を考慮した建物の

振動特性の変化に関する研究

栗田研究室

1.はじめに

既存建物の長期利用・長寿命化には構造健全性を 逐次評価・把握し、補修及び補強の要否を判断する 必要がある。近年では、振動観測記録に基づく構造 健全性診断法の開発研究が盛んに行われている。濱 本ら¹⁾は建物全体の剛性を表す固有振動数と、層の 剛性を表す振動モードの変化から、損傷の有無や損 傷層を推定する方法の有用性を実験的に明らかに している。実建物を対象に固有振動数の経年変化か ら損傷評価を試みる研究は多く報告されているが²⁾、 損傷層推定に有用であると考えられる振動モード の経年変化から損傷評価を行っている研究は少な い。また固有振動数は損傷に関係なく振幅依存性に よって変化することが多く報告されているが³⁾、振 動モードの振幅依存性は未だ報告されていない。そ こで本研究では、地震観測記録を用いて振動モード の振幅依存性について検討を行った。また振幅依存 性による固有振動数、振動モードの変化量から剛性 変化に対する相違について検討を行った。

2. 対象建物及び地震観測概要

2.1 対象建物概要

対象建物は、1980年に竣工した東京理科大学神 楽坂1号館(以降、1号館と略称)である。本建物は、 地下1階、地上17階、塔屋1階、X方向(長辺方 向)45.12m、Y方向(短辺方向)19.40m、最高高さ 63.10mの一部耐震壁を併用した鉄骨鉄筋コンクリ ート造である。図1(a)に屋上階梁伏図を示す。

2.2 地震観測概要

地震観測は、地下1階・5階・10階・屋上階の計 4箇所で行っており(図1(b))、2002年3月から現在 までに243地震記録(屋上階の計測震度が1.0以上) を蓄積している。全地震観測記録の内、最大入力加 速度5gal以下が全体の約95%を占めており、最大 入力加速度38.6gal(Y方向)を計測した2005年7月 23日の地震記録は蓄積する全地震記録の中で最も 大きい地震動である。地震計のサンプリング周波数 を100Hzに設定し、水平2成分・上下1成分の計3 成分の加速度を記録している。

3. 立体振動を考慮した地震記録のシステム同定

3.1 システム同定の概要及び手法

本研究では地震記録の解析手法として、モーダル モデルに基づく2方向入出力モデル⁴⁾によるシステ 4109635 松原 貴章

図2 2方向入出力モデルのシステム同定概要図 $\begin{cases} \ddot{x}_{i} \\ \ddot{y}_{i} \end{cases} = \sum_{j} \left[{}_{j} \beta_{x} \begin{cases} {}_{j} U_{x}^{i} \\ {}_{j} U_{y}^{i} \end{cases} \right] \overline{\ddot{q}}_{x} ({}_{j} f_{i}, jh_{i}) + {}_{j} \beta_{y} \begin{cases} {}_{j} U_{x}^{i} \\ {}_{j} U_{y}^{i} \end{cases} \right] \overline{\ddot{q}}_{y} ({}_{j} f_{i}, jh_{i}) \end{cases}$ $= \sum_{j} \left[{}_{j} \alpha_{xx}^{i} - {}_{j} \alpha_{xy}^{i} \\ {}_{j} \alpha_{yx}^{i} - {}_{j} \alpha_{yy}^{i} \end{cases} \right] \left\{ {}_{j} \overline{\ddot{q}}_{x} ({}_{j} f_{i}, jh_{i}) \right\}$ $\begin{cases} {}_{j} \overline{\ddot{q}}_{x} + 2 \cdot {}_{j} h_{i} \cdot {}_{j} \omega_{i} \cdot {}_{j} \overline{\ddot{q}}_{x} + {}_{j} \omega_{i}^{2} \cdot {}_{j} \overline{q}_{x} = -\ddot{x}_{0} \\ {}_{j} \overline{\ddot{q}}_{y} + 2 \cdot {}_{j} h_{i} \cdot {}_{j} \omega_{i} \cdot {}_{j} \overline{\ddot{q}}_{y} + {}_{j} \omega_{i}^{2} \cdot {}_{j} \overline{q}_{y} = -\ddot{y}_{0} \end{cases}$ (1)

ここに、β: 刺激係数、U: 固有モード、f: 固有振動数、 h: 減衰定数、α: 刺激関数、ω: 固有円振動数、添え字j: j次モード、添え字i:i階

ム同定を採用した(図2及び式(1))。捩れ1次モード を除いたX方向・Y方向並進1次及び2次モードと 捩れ2次モードを同定範囲とし、各次モードのモー ダルパラメータ(固有振動数・減衰定数・刺激関数) を同定している。ここで同定する際は、修正 Gauss Newton 法を用いて5階、10階、屋上階の応答加速

度の同定誤差が最小となることを同定条件として いる。

3.2 刺激関数の大きさと振動角度について

入力地震動の X 方向加振、Y 方向加振による刺激 関数(α_{xx} 、 α_{yx} 、 α_{xy} 、 α_{yy})と、刺激関数の大きさ \mathbf{R}_x 、 $\mathbf{R}_{\mathbf{v}}$ 及び振動角度 $\theta_{\mathbf{x}}$ 、 $\theta_{\mathbf{v}}$ の関係を図3に示す。ここで、 刺激関数の大きさは振動モードに相当する。また本 研究では、1号館の振動方向と建物のX軸とのなす 角度を振動角度(反時計回りを正とする)と定義し、i 次モードの刺激関数の大きさと振動角度は式(2)で 表される。

$$R_{x}(j) = \sqrt{j\alpha_{xx}^{2} + j\alpha_{yx}^{2}} , \quad R_{y}(j) = \sqrt{j\alpha_{xy}^{2} + j\alpha_{yy}^{2}}$$

$$\theta_{x}(j) = \arctan\left(\frac{j\alpha_{yx}}{j\alpha_{xx}}\right) , \quad \theta_{y}(j) = \arctan\left(\frac{j\alpha_{yy}}{j\alpha_{xy}}\right)$$
(2)

4. 地震動強さとモーダルパラメータの関係

本論文では全243 地震記録の内、同定誤差が小さ く、かつ安定的な同定結果が得られた 83 記録を用 いて分析を行った。但し、捩れ2次モードの同定結 果はばらつきが大きいため考察の対象としない。

4.1 83 地震記録を用いた分析

4.1.1 解析結果の妥当性

同定結果の一例として、図4に2003年9月20日 の地震記録の屋上階におけるフーリエスペクトル を示す。図4の同定誤差は0.08であることから、 精度良く同定できていることが確認できる。表1に 各階における同定誤差の最大値・最小値・平均値を 示す。表1より、下階ほど同定誤差が大きくなるこ とがわかる。

表1 各階の同定誤差(最大値・最小値・平均値)

1055

	崖上鸠	10月	いり
最大値	0.27	0.37	0.38
最小値	0.05	0.06	0.08
平均值	0.12	0.15	0.17
	0	0.000	0.007

4.1.2 地震動強さと振動角度の関係

図 5 に最大入力加速度 RSS と屋上階における各 次モードの振動角度の関係を示す。ここで横軸の最 大入力加速度 RSS は、各方向入力加速度の二乗和 平方(RSS)の最大値を採用している。図 5 よりばら つきが見られるものの、最大入力加速度 RSS の増 減によって各次モードの振動角度は増加または減 少しないことが確認できる。表2に各階各次モード の振動角度の平均値と標準偏差を示す。表2より、 X 方向、Y 方向並進1次では各階の平均値及び標準 偏差は概ね同じであるのに対して、X方向、Y方向 並進2次では各階平均値に差が見られ、また標準偏 差は並進1次に比べて大きいことがわかる。この理 由として、並進2次モードの同定精度が挙げられる。 より精度良く同定できれば、並進2次の振動角度の 問題は改善されると考える。

地震動強さと固有振動数・刺激関数の大きさの関 係から振幅依存性を評価するに当り、各次モードに

表2 各階各次モードにおける振動角度の平均値と標準偏差

	平均值 (°)		標準偏差 (°)			
	屋上階	10階	5階	屋上階	10階	5階
X方向並進1次	32.4	28.7	25.9	1.88	1.70	2.76
Y方向並進1次	118	120	120	3.14	3.47	3.33
X方向並進2次	36.6	48.0	51.2	9.63	10.98	9.92
Y方向並進2次	159	137	133	6.74	5.94	5.60

おける振動角度の違いを分析に反映させる必要が ある。本研究では、各地震記録から算出された各階 各次モードの振動角度を用いて式(3)より X 方向・Y 方向入力加速度を補正し、補正後のX方向・Y方向 の最大入力加速度を用いて分析を行った。

$$\begin{bmatrix} \ddot{x}'_{0} \\ \ddot{y}'_{0} \end{bmatrix} = \frac{1}{\Delta} \begin{bmatrix} \cos\theta_{y} & \sin\theta_{y} \\ -\sin\theta_{x} & \cos\theta_{x} \end{bmatrix} \begin{bmatrix} \ddot{x}_{0} \\ \ddot{y}_{0} \end{bmatrix}$$
(3)

ここに、 ÿ'₀,ÿ'₀:補正後のX方向、Y方向入力加速度 x₀, y₀: 補正前のX方向、Y方向入力加速度 $\Delta = \cos \theta_{\rm v} \cos \theta_{\rm v} + \sin \theta_{\rm v} \sin \theta_{\rm v}$

最大入力加速度と固有振動数・刺激関数の大きさ の関係から導かれる回帰直線の切片に対する傾き (式(4))を、固有振動数の変化率(a_f / b_f)、刺激関数の 大きさの変化率 (a_n/b_n) として分析を行った。

$$y = ax + b = b\left(\frac{a}{b}x + 1\right) \tag{4}$$

ここに、 a: 傾き, x: 最大入力加速度(gal), b: 切片

4.1.3 固有振動数の変化率

図 6 に各階各次モードの固有振動数変化率の絶 対値を示す。図6より各階各次モードで固有振動数 の振幅依存性が確認できた。また Y 方向並進1次の 変化率は他のモードの変化率に比べて約3割低い ことがわかる。X 方向、Y 方向並進2次において各 階の変化率が僅かに異なっているが、これは同定誤 差による影響であると考えられる。

4.1.4 刺激関数の大きさの変化率

図 7(a)・(b)に X 方向加振、Y 方向加振による各階 各次モードの刺激関数の大きさの変化率を示す。な お図 7(a)・(b)の破線枠は、加振方向と振動方向が一 致する箇所を表す。破線枠に着目すると、各階各次 モードの変化率はすべて正の値となっており、回帰 直線は右上がりになることがわかる。従って、最大 入力加速度の増加に伴って各階各次モードの刺激 関数の大きさは増加傾向にあることから、振動モー ドの振幅依存性が示唆される。

4.1.5 剛性変化に対する相違の検討

振幅依存性による固有振動数の変化率と刺激関 数の大きさの変化率を比較し、剛性変化に対する相 違を検討する。本研究では、固有振動数変化率に対 する刺激関数の大きさの変化率の比を「変化率比」 と定義し検討を行った。ここで、変化率比が1.0以 上であれば振動モードは剛性変化に対して固有振 動数と同等、もしくはそれ以上の変化をしていると 評価することができる。図8に各階各次モードの変 化率比を示す。図8より並進1次では、各階共に固 有振動数の変化率に比べて刺激関数の大きさの変 化率の方が大きいことがわかる。一方、X方向並進 2次の5階とY方向並進2次の全階では固有振動数 の変化率の方が大きいことを示している。従って、 並進1次では剛性変化に伴い固有振動数よりも振 動モードの方が変化することが示唆された。

4.2 入力地震動が励起させるモード別の分析

建物の応答は入力地震動の種類によって、並進1 次モードまたは並進2次モードが励起する場合の2 つに大別できる。本研究では83地震記録の入力地 震動を、並進1次モードを励起させる type.1 と、並 進2次モードを励起させる type.2 に分類し、固有振 動数、刺激関数の大きさの変化率についてより詳細 に分析を行った。

4.2.1 固有振動数の変化率

図 9(a)・(b)に type.1、type.2 における各階各次モ ードの固有振動数変化率の絶対値を示す。表 3 に type.1 と type.2 の固有振動数変化率の比を示す。表 3 より、X 方向・Y 方向並進 1 次及び Y 方向並進 2 次は、type.2 の固有振動数変化率に比べて type.1 の 方が大きいことがわかる。一方 X 方向並進 2 次は、 type.2 の固有振動数変化率の方が僅かに大きいこと がわかる。従って建物全体の損傷評価では、入力

地震動が励起させるモード別に分類した後、並進1 次の固有振動数の変化によって評価することが望 ましいと考えられる。

4.2.2 刺激関数の大きさの変化率

図 10(a)・(b)に type.1、type.2 における X 方向加振、 Y 方向加振による各階各次モードの刺激関数の大 きさの変化率を示す。なお図 10(a)・(b)の破線枠は、 加振方向と振動方向が一致する箇所を表す。図 10(a)・(b)より type.1 及び type.2 における X 方向・Y 方向並進 1 次の変化率は各階共に正の値となって いることが確認できる。従って、並進 1 次の振動モ ードは振幅依存性を有していることがわかった。一 方、type.1 及び type.2 における X 方向・Y 方向並進 2 次の各階の変化率は必ずしも正の値にならないこ とが確認できる。従って、並進 2 次の振動モードは 振幅依存性に影響されないことが示唆される。表 4 に type.1 と type.2 の刺激関数の大きさの変化率の比 を示す。なお、並進 2 次は振幅依存性が確認できな かったため、表 4 には X 方向・Y 方向並進 1 次のみ を示す。図 11(a)・(b)に一例として、回帰直線から 求めた中地震時(最大入力加速度:100gal)に相当する type.1、type.2、83 地震記録の振動モードの変化図を 示す。

表4 type.1と type.2 の刺激関数の大きさの変化率の比

	type.1/type.2			
	屋上階	10階	5階	
X方向並進1次	0.486	0.699	1.95	
Y方向並進1次	1.29	0.556	0.214	

表4よりX方向並進1次の場合、屋上階及び10 階はtype.2の刺激関数の大きさの変化率の方が大き く、5階はtype.1の刺激関数の大きさの変化率の方 が大きいことがわかる(図11(a))。またY方向並進1 次の場合、屋上階はtype.1の刺激関数の大きさの変 化率の方が大きく、10階及び5階はtype.2の刺激関 数の大きさの変化率の方が大きいことがわかる(図 11(b))。以上より入力地震動が励起させるモードに よって、各階の刺激関数の大きさは増減することが わかる。従って振動モードの変化による損傷評価を 行う上で、入力地震動が励起させるモードと各階の モード変化の関係性を評価・把握しておくことが重 要であると考えられる。

4.2.3 剛性変化に対する相違の検討

表4において、1.0以上を示す場合は type.1 の刺 激関数の大きさの変化率、1.0以下を示す場合は type.2の刺激関数の大きさの変化率を用いて算出し たX方向・Y方向並進1次の変化率比を図12に示 す。図12より、全階において刺激関数の大きさの 変化率の方が大きいことがわかる。これまでの考察 を踏まえると、並進1次では剛性変化に伴い固有振 動数よりも振動モードの方が変化することを確認 した。

5. 結論

入力地震動が励起させるモード別に分類して分 析を行った。以下に本論文で得られた知見を示す。 (1)X 方向・Y 方向並進1次の振動モードは振幅依存 性を有している。

(2)並進1次では剛性変化に伴い、固有振動数よりも 振動モードの方が変化することを確認した。

