物質・材料表面「水の研究」最前線 特集

親水性準1次元ナノ細孔に 閉じ込められた水の奇妙な振る舞い

まこと 誠 東京理科大学理学部第一部 化学科 教授 田 所

はじめに

進1次元(ある程度幅をもった1次元構造) である~1 nm (ナノメートル: 10^{-9} m) サイ ズの空孔に閉じ込められた水は、外壁の影響 で、通常の水とは異なった挙動を示す。例え ばカーボンナノチューブ (carbon nanotube: CN) に閉じ込められた水は. 外壁がグラフ ァイト表面のような疎水性であるため、疎水 性界面の影響を受けた「水」の性質をもつ。 そして、この「水」は室温でも溶けない「氷」 を作り、氷-水の相転移の境界(臨界点)を 観測できるのである。

本研究では~1.5 nmの直径をもつ親水性 の準1次元ナノ細孔をもつ分子性多孔質結晶 を構築し、親水性の外壁に影響された「水| について詳しく述べる。疎水性や親水性の異 なる界面からなるエンタティック状態の 「水」について考え、ナノ細孔の水の結晶構 造や中性子物性などにも焦点を当てる。特に 中性子のエネルギーレベルはHoOの運動エネ ルギーに合わせることができ、その水の運動 モードをみることに適している。また、中性 子は原子核を直接みるため. 電子の少ないプ

図1 エンタティック状態の水

ロトンをみるのにも適している。分子性ナノ 結晶を用いて親水性ナノ細孔に閉じ込められ た水の構造物性を研究しているグループは. 世界的にみてもほとんど例がない。

エンタティック状態の水

エンタティック状態 (entatic state) とは、 生物無機化学(bioinorganic chemistry)で金 属タンパクなどの活性中心に使用される言葉 である。タンパクなどの活性中心にある金属 イオンは、タンパク全体にわたるゆがみを受 けて通常ではとりえない配位構造をもち、異 常なスピンや酸化状態を安定化できる。この ようなタンパク内部にわたる連続的な歪みの 重ね合わせによってつくられるエンタティッ ク状態が、タンパクなどの活性中心の触媒機 能の根幹である。そして、この状態は結晶固 体の新たな物性開発の指針としても役立つも のである。例えば、図1Aのように規則的に H₂O(○を示す)がナノ細孔の周辺から内部 へ詰まっていくとき、中心付近のH₂Oは安定 な正四面体型の水素結合(図2)をとれな い。図1BのようにH₂Oは、中心に行くほど 動きや揺らぎが大きくなり、中心付近のH₂O は異常な歪みをもつ水素結合をつくる。この 状態はHoOが氷になっても同様である。

疎水性・親水性のナノ空孔内の水

親水性および疎水性のナノチャネル細孔の 水の中心付近では,通常の氷にみられる正四 面体型の安定な水素結合をとりにくく. エン

親水性空間 (B) 疎水性空間 (A) 親水性官能基 = H₂O 硬水性空間の境界

図2 安定な正四面体型水素結合

水素結合

図3 親水性と疎水性エンタティック状態の水

る。図3Aには親水性ナノ細 孔でカルボキシル基の親水性 ○原子が. 壁面に一定の間隔 で現れた状態を表している (赤太線は親水性の官能基や分 子)。一方、図3BではCNの ようなグラファイト界面で囲 まれた疎水性ナノ細孔(青太 線は疎水性の界面)を表して いる。黄色丸はそれぞれのナ ノ空孔に閉じ込められたH₂O がつくる水分子クラスター (Water molecular cluster : WMC)の模式図を示している。

親水性ナノ細孔の外壁では、親水性官能基に よってHoOがピンポイントで水素結合されて おり、第1の構造水層を形成する。そのため、 次に水素結合した第2水和層のH2Oは、第1 層のH₂Oを起点として正四面体型の水素結合 に強制される。しかし、第3水和層のH₂O は、ほぼナノ細孔の中心にあり、安定な水素 結合をとれない。この第3層目のH₂Oが、エ ンタティックな状態であり、親水性ナノ細孔 の水の異常な物性を引き起こすのである。

一方、CNのように疎水性ナノ細孔の水 は、グラファイトのような芳香族炭素骨格か ら作られた壁面と強く水素結合しない。すな わち、疎水性ナノ細孔の水は、CNの疎水性 壁面のπ電子やC原子とOH…πあるいは

図4 側面からみた (A)親水性, および (B) 疎水性ナノ細孔に閉じこめられた水

OH…Cなどの弱い水素結合やファンデルワ ールス接触が優先される。そのため、H₂O同 土の分子間OH…O水素結合がより強固にな り,界面に沿った準2次元的な水素結合ネッ トワークを発達させることになる。

これらの親水性と疎水性のナノ細孔の WMCを側面から見たものが、図4に示して ある。親水性のナノ細孔の水は、外壁の官能 基とのピンポイントな水素結合により、一定 の間隔で周期的なWMCを安定化している。 この構造水はタンパク表面の吸着水のように 壁面との水素結合によって動きが制限され. WMCの中心に行くほど動きやすい傾向にあ る。

一方. 疎水性壁面でもH₂O同士の水素結合

で構造化されているが、壁面との相互作用は 弱く、巨大な1つのWMCとして存在し、動 きやすくなっている。CN内の直径~1nm以 下の小さな空孔でも、融点などの物性が観測 できるのは、WMCが1次元的に動きやすい 性質をもち、相転移によるゆがみを全体に伝 えやすいためである。直径2~3nm程度の CNでは、凝固のときWMCの中心付近から バルクの氷を作ろうとする。しかし、CNの ナノ細孔は狭いので、疎水性によって強要さ れた形で凍結しようとする。不安定な氷を内 部に凍結させるより、WMCごと外部に押し 出されてバルクの氷となる方が安定なため "dry-wet転移"を起こすのである。

親水性ナノ細孔に閉じ込められた WNTの構造と性質

分子性のナノ多孔質結晶<u>1</u>の単結晶は, [Co^m(H₂bim)₃]³⁺(トリスビスイミダール コバル

図6 結晶1のチャネル方向からみた構造 (a) X線構図解析,(b)中性子構造解析

図7 結晶1の原子核密度マップ

ト(III) 錯体) と有機スペーサーのTMA³⁻ (トリメジン酸イオン) を水中で反応させ ると得られる。まず, 図5の互いに相補 的な水素結合したハニカムシート(二次 元のハチの巣構造)が形成される。この シートが空孔をそろえて積層することで ~1.5 nmサイズの準1次元親水性ナノ 空孔をもつ多孔質結晶<u>1</u>を構築した(図 6a)。このナノ細孔のH₂Oは,横に5分 子(3層のチューブ構造)にしか並べる ことができず,外壁に存在するカルボキシル

基のO原子と強く水素結合した構造水からな る。この水ナノチューブ型のクラスター (Water Nanotube : WNT)の構造と性質につい て報告する。

中性子は電子ではなく原子核を散乱するた めH₂Oのプロトンの位置を正確に決められ る。しかし,O原子とH原子では互いに異な った符号の散乱断面積をもつ。そのため,自 由回転をしたH₂Oは,中性子での散乱が相殺 されてみることはできない。図6bは中性子 構造解析によって得られたWNTの構造を示 している。WNTの中心付近のH₂Oは,エン タティックな状態にあり,動きやすく空洞と なっているが,外壁と水素結合したH₂O(赤 色と白色)は構造化してみえる。室温付近の 結果なので,絶えず動いている液体のH₂O が,外壁のO原子と一定の形で水素結合して いるため,長時間にわたる測定ではWNTの

> 構造として認 識できるので ある。図7に は中性子構造 解析からみた 原子を示し た。外壁にあ るTMA³⁻の0 原子は、WNT 内のH₂Oと強

表1 中性子準弾性散乱による結晶1の拡散係数 (D)・ 滞在時間 (τ₀)・平均移動距離 (<ℓ>)の比較

(9691-)

			(200R)
	$D/\text{\AA}^2 \mathbf{s}^{-1}$	τ_0/s	$< \ell > / \text{\AA}$
WNT in 1	9.44×10^{10}	4.70×10^{-10}	5.15
通常の水	0.85×10^{11}	4.66×10^{-12}	1.54
WNT in CNT	5.40×10^{10}	1.25×10^{-11}	6.40

く水素結合するため、O…H-Oの原子核密 度が強く観測された。これはWNTが親水性 のO原子によってピンポイントで水素結合 し、安定化されている証拠と考えられる。

表1には親水性ナノ細孔の水の運動モード を調べるため、268 Kで行った中性子準弾性 散乱の解析結果を示している。拡散定数*D*, 存在時間τ₀, 平均移動距離<0>の水の運動 モードが求められた。CN内の疎水性ナノ細 孔の水も、親水性ナノ細孔の水も水としての 性質はほとんど同じであることは特筆すべき 点である。通常の水は、H₂Oの滞在時間τ₀が 一桁短くなっていた。これは、ナノ空孔の水 が、界面で構造化しており、決められた構造 に従って「構造化」するのに時間が必要だか らと考えられる。

親水性ナノ細孔に閉じ込められた WNTのプロトン伝導

プロトン伝導度の測定は、結晶<u>1</u>の単結晶 を用いて、端子付けの必要ないマイクロ波空 洞共振器摂動法によって行い、図8にその結 果を示した。室温(298 K)でのH₂O-WNTの 伝導度(青色線)は熱活性型の温度依存性が あり、活性化エネルギーは~0.3 eV(0.025 S/ cm)であった。しかし、D₂O-WNT(赤色線) の伝導度は、~0.013 S/cmとほぼ半分にな り、明らかに同位体効果が観測された。これ はキャリアがプロトンであることを示してい る。また、ナフィオン膜(NE-115)の伝導度 (緑色線)がWNTの伝導度と同等になった。 強酸性条件下のナフィオン膜のように"H⁺" などのキャリアを導入しないで、ナノ細孔中

にWNTを形成させるだけで、純水の100万倍 速く流れるプロトン伝導度が得られた。

筆者らは、高いプロトン伝導性を示す理由 として、まずTMA³⁻が共役強塩基であり、 OH型のキャリアが増加するプロトンホール (proton hole) 伝導を起こし、これがWNTの 周期化された構造を伝達するためと考えてい る。すなわち、WNTは一定の間隔でカルボ キシル基のO原子とH₂Oの水素結合により、 ピン止めされ、周期化されたクラスターの中 をプロトンが、波のように運動するためであ ろう。

おわりに

親水性の1次元ナノ多孔質結晶にWMCを 閉じ込めることに成功した。このWNTは融 解-凝固の相転移挙動をもち,そのミリメー トルの単結晶を容易に作製できる。現在,親 水性ナノ細孔の水科学は,CNで代表される 疎水性のものより遅れている。これは,良い モデルがなかったからではないか。エンタテ ィック状態をもつ水が,ナフィオン膜に匹敵 するプロトン伝導を引き起こすことは,生体 中のプロトン移動に似ている。このWNTの 構造科学的な研究が生体メカニズムを解明す る手かがりになるのではないだろうか。プロ トン伝導測定では東北大の松井広志教授に感 謝したい。