ノート9:固有値と固有ベクトル

9-1. 固有値と固有ベクトル

n次正方行列 A に対し,A $x = \lambda x$ (\Leftrightarrow ($\lambda E - A$)x = 0) となるような,ある $\lambda \in C$ と 0 ではない $x \in C^n$ が存在するとき, λ を A の固有値,x を固有値 λ に対する A の固有ベクトルという.

例 9-1:
$$A=\begin{pmatrix}2&-4\\1&-3\end{pmatrix}$$
, $x=\begin{pmatrix}1\\1\end{pmatrix}$ に対し, $Ax=-2x$.よって -2 は A の固有値, $\begin{pmatrix}1\\1\end{pmatrix}$ は固有値 -2 に対する A の固有ベクトル.

補足 9-1: λ が A の固有値 $\Leftrightarrow (\lambda E - A)x = 0$ が自明でない解をもつ $\Leftrightarrow |\lambda E - A| = 0$

補足 9-1 より, $|\lambda E - A| = 0$ の解 λ が A の固有値となることが分かる. $F_A(\lambda) = |\lambda E - A|$ を A の固有多項式, $F_A(\lambda) = 0$ を A の固有方程式という. $F_A(\lambda) = (\lambda - \lambda_1)^{n_1}(\lambda - \lambda_2)^{n_2} \dots (\lambda - \lambda_r)^{n_r}$ と表したとき, n_i を λ_i の重複度という.

例 9-2:
$$A=\begin{pmatrix}2&1&0\\1&2&1\\-3&-1&-1\end{pmatrix}$$
の固有値,固有ベクトルを求める.

方法:

手順 $1: |\lambda E - A| = 0$ を λ について解く.

手順2:手順1で求めた λ に対して, $(\lambda E - A)x = 0$ をxについて解く.

注 9-1: この授業では、 λ に対する固有ベクトルを求めるときは、 $(\lambda E - A)x = \mathbf{0}$ の解全体からなる部分空間の基底を 1 つ求めることにする.

定理 9-1(教科書 P.112 定理 5.2) $B=P^{-1}AP$ に対し, $F_B(\lambda)=F_A(\lambda)$ となる.

定理 9-1 の証明:

例 9-3: 定理 9-1 より、A の固有値と $P^{-1}AP$ の固有値は等しいことが分かる。例えば、

例 9-3:足壁 9-1 より、
$$A$$
 の固有値と P * AP の固有値は等しいこの $P^{-1}AP = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}$ のとき、 A の固有値は $\lambda_1, \lambda_2, \lambda_3$ となる.

注 9-2:Aの固有ベクトルと $P^{-1}AP$ の固有ベクトルは等しいとは限らないことに注意.

定理 9-2 (教科書 P.113 定理 5.3) 相異なる固有値に対する固有ベクトルの組は線形独立.

定理 9-2 の証明: