2018 年度前期期末試験

- 1 次の条件を満たす $v \times b$ 行列 $A = (a_{ij})$ に対し、以下の問に答えよ.
 - 条件1 A の成分は1 か0 である.
 - 条件 2 A の各行に 1 が r 個ある $(r \ge 1)$.
 - 条件 3 A の任意の異なる 2 行に対して,1 が同時に現れる列が λ 個ある.
 - **(1)** A ^tA の階数を求めよ. (15 点)
 - (2) Aの階数を求めよ. (15点)

$$\begin{bmatrix} 2 \end{bmatrix}$$
 実数 m と行列 $A=\begin{pmatrix} 1&m&m^2\\m&m^2&1\\m^2&1&m \end{pmatrix}$ に対し、以下の問に答えよ.

- (1) Aの階数を求めよ. (15点)
- (2) |A| を計算せよ. (10 点)
- (3) A が正則であるための条件を求めよ、また、行基本変形をすることで A^{-1} を求めよ、(15 点)

(4) 同次連立 1 次方程式
$$A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
 の解を求めよ. (15 点)

(5) 連立 1 次方程式
$$A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} m \\ m \\ m+1 \end{pmatrix}$$
 の解を求めよ. (15 点)

2018 年度前期期末試験の略解

1 (1)

 $A^{t}A$ は対角成分が r でその他の成分が λ の v 次正方行列なので、

 $r = \lambda$ の場合:rank $A^t A = 1$

 $r \neq \lambda$ の場合:rank $A^t A = v$

(2)

 $r = \lambda$ の場合:

Aの全ての行が一致するので、rank A = 1

 $r \neq \lambda$ の場合:

A の階数がv 未満であると仮定する.

このとき、あるv次正則行列PによってPAのv行目を全て0にすることができる.

よって PA^tA のv行目が全て0となるので PA^tA が正則ではないことが分かる.

一方, (1) より $r \neq \lambda$ のとき $A^t A$ は正則なので $PA^t A$ も正則となり矛盾.

よって、 $\operatorname{rank} A = v$.

2 (1)

m=1 のとき, rank A=1

 $m \neq 1$ のとき, rank A = 3

(2)
$$-(m^2+m+1)^2(m-1)^2$$

(3) A が正則であるための条件は $m \neq 1$

$$A^{-1} = \frac{1}{1 - m^3} \begin{pmatrix} 1 & 0 & -m \\ 0 & -m & 1 \\ -m & 1 & 0 \end{pmatrix}$$

$$m=1$$
 のとき, $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = s \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$

$$m \neq 1$$
 のとき、 $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

(5)

m=1のとき、解なし

$$m \neq 1$$
 のとき, $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \frac{1}{m^3 - 1} \begin{pmatrix} m^2 \\ m^2 - m - 1 \\ m^2 - m \end{pmatrix}$