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1 Introduction

It is well-known that the Ricci flow can be used to give an alternate proof of the uni-
formization theorem of Riemann surfaces:

Theorem 1.1. Every compact connected Riemann surface is a quotient by a free, properly
discontinuous action of a group on the unit disc, the complex plane, or the Riemann
sphere. Moreover, it admits a Riemannian metric of constant scalar curvature.

Likewise, we would like to find a geometric flow and to classify non-Kähler complex
surfaces. Our flows should preserve Hermitianness, pluriclosedness and be close to the
Kähler-Ricci flow. First of all, we recall the following fact:

Lemma 1.1. Let U ⊂ Cn be an open subset homeomorphic to a ball, and suppose
ω ∈ Λ1,1

R is a pluriclosed form on U . There exists α ∈ Λ0,1 such that ω = ∂α + ∂̄ᾱ.

From this point of view, we define a flow of pluriclosed metrics using a d-closed (1, 1)-
form and a first-order (0, 1)-form. Since we would like to reduce the flow to the Kähler-
Ricci flow, we choose the Chern-Ricci curvature form as the closed form. In [21], Streets
and Tian introduced a parabolic evolution equation of pluriclosed metrics with a pluri-
closed initial metric ω0 on a compact Hermitian manifold,

(PF)


∂
∂t
ω(t) = ∂∂∗g(t)ω(t) + ∂̄∂̄∗g(t)ω(t)− Ric(ω(t)) =: −Φ(ω(t)),

ω(0) = ω0,

which is called the pluriclosed flow (PF), where ∂∗g(t) and ∂̄∗g(t) are decompositions of the L2-

adjoint operator of the exterior differential operator with respect to metrics g(t), Ric(ω)
is the second Chern-Ricci curvature of the Chern connection of a Hermitian metric ω; one
of the Ricci-type curvatures of the Chern curvature. One has in complex coordinates the
formula Ricij̄ = −gkl̄∂i∂j̄gkl̄ + gkl̄grs̄∂igks̄∂j̄grl̄ = −∂i∂j̄ log det(g). Note that the operator
ω 7→ Φ(ω) is a strictly elliptic operator for a pluriclosed metric ω, which means that the
equation (PF) with a pluriclosed initial metric is a strictly parabolic equation. Hence the
short-time existence and uniqueness of the solution (PF) follows from standard parabolic
theory since the manifold is supposed to be compact. One can easily check that pluriclosed
condition is preserved with using that ∂2 = ∂̄2 = 0 and ∂∂̄ = −∂̄∂.

Let (M2n, g, J) be a complex manifold with complex structure J and compatible metric
g. Let ω be the fundamental (1, 1)-form of (M2n, g, J) defined by ω(X, Y ) = g(X, JY ).
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Let∇L denote the Levi-Civita connection. Then the Chern connection∇C and the Bismut
connection ∇B are given by

g(∇C
XY, Z) = g(∇L

XY, Z) +
1

2
dω(JX, Y, Z), g(∇B

XY, Z) = g(∇L
XY, Z) +

1

2
dcω(X, Y, Z)

respectively, where dc = i(∂̄ − ∂), dcω(X, Y, Z) = −dω(JX, JY, JZ) for any Y, Z ∈
T 1,0M and X ∈ TCM . Then we obtain PB(ω) = PC(ω) − dd∗ω, where PC(ω) is the
Ricci form associated to the Chern connection of the metric g given by PC(ω)(X, Y ) =
1
2

∑2n
i=1 g(ΩC(X, Y )ei, Jei), where {e1, . . . , e2n} is a local orthonormal frame of the tangent

bundle TM and ΩC is the curvature of the Chern connection such that ΩC(X, Y ) =
[∇C

X ,∇C
Y ] − ∇[X,Y ]. The Ricci form PB(ω) of the Bismut connection of the metric g is

defined in a similar way (cf. [1]). This implies that a solution to (PF) can be written by

∂

∂t
ω(t) = −(PB(ω(t)))1,1,

where (PB(ω(t)))1,1 denotes the projection of PB(ω(t)) onto (1, 1)-forms. Streets and
Tian showed that having a bound on the Bismut Ricci curvature (PB)1,1 suffices to obtain
long-time existence for solutions of (PF).

Proposition 1.1. ([23, Theorem 1.2])Let (M2n, ω(t), J) be a solution to (PF) starting
at a pluriclosed metric on [0, τ). Suppose∫ τ

0

sup
M×{t}

|(PB(ω(t)))1,1|dt <∞.

Then the solution extends smoothly past time τ .

Let (M2n, ω̃, J) be a compact complex manifold with pluriclosed metric, and let ω(t)
be a solution to (PF) starting at a pluriclosed metric. We define a potential function ϕ(t)
along the solution ω(t) as follows:

∂
∂t
ϕ(t)−∆ω(t)ϕ(t) = trω(t)ω̃ − n,

ϕ(0) = 0,

where ∆ω(t) = trω(t)∂∂̄. It follows from standard parabolic theory that ϕ(t) exists on the
same time interval that ω(t) exists. We can actually define this potential function ϕ(t)
along the solution ω(t) with respect to a one-parameter family of pluriclosed metrics ω̃(t).

Proposition 1.2. ([23, Theorem 1.3])Let (M, g̃, J) be a compact complex manifold and
suppose ω(t) is a solution to (PF) starting at a pluriclosed metric on [0, τ) and suppose
there is a constant C such that

sup
M×[0,τ)

|ϕ(t)| ≤ C, sup
M×[0,τ)

|T (ω(t))|2 ≤ C,

where T (ω(t)) is the torsion of the Chern connection associated to ω(t). Then ω(t)→ ω(τ)
in C∞, and the flow extends smoothly past time τ .
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This proposition implies that the regularity requirement for solutions ω(t) to (PF)
can be reduced to studying the behavior of the potential function ϕ and the torsion of
solutions to (PF).

The (1, 1) Aeppli cohomology group of a compact complex manifold M of complex
dimension n is the following;

H1,1

∂+∂̄
(M) =

{Ker∂∂̄ : Λ1,1
R (M)→ Λ2,2

R (M)}
{∂α + ∂̄ᾱ|α ∈ Λ0,1(M)}

,

which is a finite dimensional space and isomorphic to the Bott-Chern cohomology group
H1,1
BC(M,R) = {d-closed real (1, 1)-forms}/

√
−1∂∂̄C∞R (M) for n = 2, where Λp,q

R (M),
C∞R (M) denote the space of smooth real (p, q)-forms and the space of smooth real func-
tions on M respectively. Let the positive cone inside H1,1

∂+∂̄
(M) be

P∂+∂̄(M) = {[φ] ∈ H1,1

∂+∂̄
(M)|∃ψ ∈ [φ], ψ > 0}.

It is obvous that a necessary condition for a solution to (PF) to exist is that the class
[ω(t)] = [ω0]− tcBC1 ∈ P∂+∂̄(M), where cBC1 denotes the first Bott-Chern class. Note that
on a minimal non-Kähler compact complex surface M with pluriclosed metric ω0, we have
[ω0] − tcBC1 (M) ∈ P∂+∂̄(M) for all t ≥ 0. It is because that for a smooth real ∂∂̄-closed
(1, 1)-form φ, [φ] ∈ P∂+∂̄(M) can be characterized by

∫
M
φ ∧ γ0 > 0 and

∫
D
φ > 0 for

every irreducible effective divisor with negative self intersection in the case of non-Kähler
compact complex surfaces (cf. [23, Theorem 5.6]). Herre, γ0 denotes a positive generator

of
d{Λ1

R}∩Λ1,1
R√

−1∂∂̄C∞R
which is identified with R via the L2 inner product with a pluriclosed metric

if b1 = odd, where Λ1
R denotes the space of smooth real 1-forms.

Let M be a compact complex manifold of complex dimension n. We define the Kodaira
dimension of M to be the infimum of κ(M) ∈ [−∞,∞) such that there exists a constant
C with dimH0(M,K⊗mM ) ≤ Cmκ(M) for all large integer m with the convention that
if H0(M,K⊗mM ) = {0}, then we take κ(M) = −∞, note that κ(M) takes one of the
values −∞, 0, 1, 2, . . . , n, where KM =

∧n T ∗M is the canonical line bundle of M and
H0(M,K⊗mM ) is the vector space of global holomorphic sections of the holomorphic line
bundle K⊗mM . The Kodaira dimension κ(M) measures the growth of the dimension of
H0(M,K⊗mM ) as m→∞. We say that M is of general type (KM is big) if κ(M) = n.

Streets and Tian introduced the flow in order to study the toplology of class V II+

surfaces. Class V II surfaces are compact complex surfaces with the Kodaira dimension
κ = −∞ and the first Betti number b1 = 1. Class V II+ surfaces are class V II surfaces
with the second Betti number b2 > 0. It is well known that the classification problem of
class V II0 surfaces (minimal class V II surfaces, ”minimal” means no (−1)-curves) can
be reduced into finding b2- rational curves, thanks to Dloussky, Oeljeklaus and Toma:

Theorem 1.2. ([7] Dloussky, Oeljeklaus and Toma) Suppose that a class V II0 surface S
has b2(S)-rational curves. Then S has a global spherical shell.

A spherical shell is an open surface which is biholomorphic to a neighborhood U of
3-sphere S3 ⊂ C2. That a complex surface S has a global spherical shell (GSS) means
that there is an open submanifold V ⊂ S which is spherical shell and such that S \ V is
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connected (cf. [10]). Class V II0 surfaces which allows GSS’s are well-understood. Streets
and Tian conjectured that one can show the existance of sufficiently many rational curves
with using (PF) and finish the classification of class V II0 surfaces. In the case of b1 = 1,
they succeeded to classify under the following conjecture for non-Kähler surfaces:

Conjecture 1.1. ([23] Strong existence conjecture for non-Kähler surfaces) Let (M, g0, J)
be a non-Kähler compact complex surface with pluriclosed metric. Let ω(t) be the solution
of the pluriclosed flow with initial condition g0. Suppose ω(t) exists on [0, τ) and that

(1) limt→τ Vol(g(t)) > 0,

(2) There exists ε > 0 such that ε <
∫
D
ω(τ) < 1

ε
for every irreducible effective divisor

D with negative self intersection.

Then there exist uniform C∞ estimates on ω(t) on [0, τ) depending on ε.

Theorem 1.3. ([23, Theorem 7.1]) Suppose Conjecture 1.1 holds. Then any class V II+

surface contains an irreducible effective divisor of nonpositive self intersection.

It is well known that any divisor D on a class V II0 has D2 ≤ 0. We write D2 for its
self intersection number.

We prove this result with using the following Lemma;

Lemma 1.2. ([23, Lemma 5.13]) Let (M4, ω, J) be a compact complex surface with
pluriclosed metric. Suppose the first Betti number b1 = odd and the Hodge number
h0,2 = 0. Then

[∂ω] 6= 0 ∈ H3(M,C), [∂ω] 6= 0 ∈ H2,1(M),

where Hp,q(M) is the Dolbeault cohomology group.

We define the Hodge number by hp,q = dimCH
p,q(M) = dimCH

q(M,Ωp
M), where Ωp

M

is the sheaf of germs of holomorphic p-forms on a compact complex manifold M since we
have Dolbeault’s isomorphism Hp,q(M) ∼= Hq(M,Ωp

M).
We may apply this lemma to a class V II+ surface and which leads a contradiction if

we assme that there is no irreducible effective divisor with nonpositive self intersection.
So we conclude that there exists an irreducible effective divisor D with D2 ≤ 0 on any
class V II+ surface. We now apply the result of Theorem 1.3 to the classification problem
of class V II+

0 surfaces. From Theorem 1.3, there always exists an irreducible effective
divisor of nonpositive self intersection on any class V II+

0 surface. It is well known that if
D is an irreducible effective divisor on a class V II0 surface, then D is either a nonsingular
rational curve, a rational curve with a node or a nonsingular elliptic curve (cf. [20, (2.2)
Lemma]). If D is an elliptic curve on a class V II0 surface, then the surface is either an
elliptic V II0 surface (contains at least 3 elliptic curves), or a Hopf surface or a parabolic
Inoue surface (cf. [20, (10.2) Theorem]). In our case of class V II+

0 , since we have b2 > 0,
it is restricted to be an elliptic V II0 surface or a parabolic Inoue surface.

Here note that a class V II+
0 surface S has at most b2(S)-rational curves and if S

admits a GSS, then there are exactly b2(S)-rational curves. Thanks to Theorem 1.2, we
see that Conjecture 1.1 implies that any class V II0 surface with b2 = 1 contains a GSS
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and can be classified into Kato surfaces (A Kato surface is a minimal compact complex
surface with b2 > 0 contains a GSS. It was shown by Kato that a Kato surface S is
diffeomorphic to a Hopf surface blown up at b2(S)-points and the fundamental group of
S is isomorphic to Z. A Kato surface does not admit Kähler metrics. cf. [10]) More
precisely, it is an Enoki surface with b1 = 1. An Enoki surface with b1 = 1 is a class V II0

surface with a rational curve C with a node with C2 = 0. Note that it is known that an
Enoki surface has a GSS (cf. [8]). This is the same result as Teleman showed:

Theorem 1.4. ([26] Teleman) Any class V II0 surface with b2 = 1 has a rational curve
with a node.

A solution of the pluriclosed flow with pluriclosed initial condition ω0 is equivalent to
a solution of the following parabolic evolution equation on a compact complex manifold
with pluriclosed metric, we here call it the Hermitian curvature flow (HCF):

(HCF)


∂
∂t
ω(t) = −S(ω(t)) +Q1(ω(t)),

ω(0) = ω0,

where Sij̄ is the first Chern-Ricci tensor and Q1 is a quadratic in the torsion of the Chern

connection Q1
ij̄ = gkl̄grs̄Tiks̄Tj̄ l̄r [21, Proposition 3.3]. Note that Ric = S + div∇T − ∇w̄

for any pluriclosed metric g, where T is the torsion of the Chern connection ∇ associated
to g, (div∇T )ij̄ = gkl̄∇l̄Tkij̄, (∇w̄)ij̄ = gkl̄∇iTj̄ l̄k. In the Kähler case, Sij̄ = Ricij̄ is the
Ricci curvature. Since one has in complex coordinates on a Hermitian manifold (M, g) the
formula Sij̄ = −gkl̄∂k∂l̄gij̄ + gkl̄grs̄∂kgis̄∂l̄grj̄, we see that S is a strictly elliptic operator.
Hence the equation ∂

∂t
ω = −S + Q1 is a strictly parabolic equation, and so the short-

time existence and uniqueness of the solution to (HCF) with initial condition ω0 follows
from the standard theory. Since solutions to (HCF) are unique, the solution to (HCF)
coincides with the solution to (PF) and the pluriclosed condition is preserved. If the
initial condition ω0 of the solution to HCF is Kähler, the solution is Kähler and HCF
(equivalently (PF)) coincides with the Kähler-Ricci flow (cf. [21, Proposition 3.2], [22,
Proposition 5.2]).

Definition 1.1. Let (M,J) be a complex manifold. A metric g is called a pluriclosed
metric on M if g is a Hermitian metric whose associated real (1, 1)-form (,which is called
the fundamental (1, 1)-form ω = g(J ·, ·) of the Hermitian metric g,) ω =

√
−1gij̄dzi ∧ dz̄j

satisfies ∂∂̄ω = 0.

We also define the Gauduchon metric.

Definition 1.2. Let (M,J) be a complex manifold of dimension n. A metric g is called
a Gauduchon metric on M if g is a Hermitian metric whose associated real (1, 1)-form
ω =
√
−1gij̄dzi ∧ dz̄j satisfies ∂∂̄(ωn−1) = 0.

We will also refer to the associated real (1, 1)-form ω as a pluriclosed metric or a
Gauduchon metric. The following states that there are lot of Gauduchon metrics on any
compact Hermitian manifold M .
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Proposition 1.3. ([11] Gauduchon) Let M be a compact complex manifold of complex
dimension n. Any Hermitian metric on M is conformally equivalent to a Gauduchon
metric. If n ≥ 2, then this Gauduchon metric is unique up to a positive factor.

Since all complex surfaces admit Hermitian metrics, there are always pluriclosed met-
rics (Gauduchon metrics) on compact complex surfaces.

The followings are the definition of the static pluriclosed metric and the degree of the
pluriclosed metric.

Definition 1.3. Let (M,J) be a complex manifold with a pluriclosed metric ω on M .
We say that ω is a static pluriclosed metric if for some constant λ,

Φ(ω) := −∂∂∗gω − ∂̄∂̄∗gω + Ric(ω) = λω.

Definition 1.4. Let (M4, J) be a compact complex surface with a pluriclosed metric ω.
Let

dg := degg(M) =

∫
M

〈cBC1 (M), ω〉gdVg =

∫
M

cBC1 (M) ∧ ω =

∫
M

Ric(ω) ∧ ω

denote the degree of the pluriclosed metric ω (cf. [21, Definition 3.7], [23, Definition 7.2]),
where g is the metic associated to ω. Note that the value of degree does not depend on the
representative of cBC1 (M) since the definition is made with respect to a fixed pluriclosed
metric.

Note that if ω is Kähler and static, then it is Kähler-Einstein. On a complex surface,
the existence of static pluriclosed metrics are closely related to the existence of algebraic
and topological structures on the surface. For instance, the existence of static pluriclosed
metric with λ 6= 0 implies the existence of a Hermitian-symplectic structure (Definition
1.4).

Streets and Tian studied static pluriclosed metrics on K3 surfaces (compact complex
surfaces with the Hodge number h0,1 = 0 and the first Chern class c1 = 0), 2-dimensional
complex tori and complex surfaces of general type . On these surfaces, a static pluriclosed
metric is Kähler-Einstein ([21, Proposition 5.6, 5.7]). Here we only introduce the case of
surfaces of general type. We need the following proposition.

Proposition 1.4. ([21, Proposition 5.5])Let (M4, J, g) be a compact complex surface
with static pluriclosed metric. Then we have

cBC1 (M)2 − 2λdg +
1

2
d2
g ≥ 0, 2cBC1 (M)2 ≤ d2

g

with equality in either case if and only if either g is Kähler-Einstein or cBC1 (M) = 0.

Then with using the proposition above, we obtain the result for surfaces of general
type. Note that the field of meromorphic functions on a compact connected complex
manifold is a finitely generated algebraic function field with a transcendency degree over
C, that does not exceed dimCM (cf. [2, I. (7.1) Theorem.]). This transcendency degree
is called the algebraic dimension of M and denoted by a(M). We always have

κ(M) ≤ a(M) ≤ dimCM,
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where a(M) = trans.degCC(M), C(M) is the field of meromorphic functions. Here,
trans.degCC(M) denotes the maximum number of elements of the field C(M) algebraically
independent over C. We say elements f1, . . . , fn ∈ C(M) are algebraically independent
over C if there does not exist 0 6= F ∈ C[x1, . . . , xn] such that F (f1, . . . , fn) = 0. Note that
if M is algebraic, then every meromorphic function is rational and the field of meromorphic
functions is the field of rational functions on M .

Proposition 1.5. (cf. [21, Proposition 5.7]) Let (M4, J, g) be a minimal compact complex
surface of general type with static pluriclosed metric. Then g is Kähler-Einstein.

Proof. Let ω be a static pluriclosed metric Φ(ω) = λω. Since M is of general type,
i.e, the canonical bundle KM is big, we have κ(M) = 2 and also we have a(M) = 2
from the inequality κ(M) ≤ a(M) ≤ dimCM . Then M is algebraic (cf. [2, IV . (6.2)
Theorem.]). (Indeed, a compact complex surface has algebraic dimension 2 if and only if
it is projective (cf. [2, IV . (6.5) Corollary.]).) Hence M is embedded into a projective
space PN for some N ∈ N. On the other hand, since the surface M is supposed to be
minimal and κ(M) ≥ 0, then KM is nef (cf. [2, III. (2.4) Corollary.]). Since a nef
line bundle L on a smooth projective variety is big if and only if c1(L)2 > 0, we obtain
cBC1 (KM)2 > 0. Since KM is nef and big, we may conclude that the canonical bundle
KM is semi-ample. Therefore, there exists a well-defined holomorphic map induced by
KM , ιs : M → PN , where s = (s0, s1, . . . , sN) is an ordered basis of H0(M,K⊗mM ) for
some sufficiently large integer m. Then we obtain c1(KM) = 1

m
[ι∗sωFS], where ωFS is the

Fubini-Study metric on PN . Since M is a submanifold of PN , we may see that ι∗sωFS a
Kähler metric on M , and hence we have c1(KM) = 1

m
[ι∗sωFS] > 0 (which is equivalent to

that KM is ample from the Kodaira embedding theorem). The positivity of the canonical
bundle KM implies that we have dg < 0. Since we have 0 < cBC1 (M)2 = λdg, we then must
have λ < 0. From Proposition 1.4, we have the inequality 2cBC1 (M)2 ≤ d2

g and then we

obtain dg ≤ −
√

2cBC1 (M)2 and also −λ ≤
√

cBC
1 (M)2

2
. Combining these with the equality

2
∫
X
|∂∗gω|2gdVg = dg − 2λ, we obtain

2

∫
X

|∂∗gω|2gdVg ≤ −
√

2cBC1 (M)2 + 2

√
cBC1 (M)2

2
= 0,

which implies that ∂∗gω = 0, equivalent to that ∂ω = 0. Therefore ω is Kähler.

Thanks to the Kodaira-Enriques classification (cf. [2, pg.244]), we know that minimal
non-Kähler compact complex surfaces fall into the following cases:

(1) (Primary and Secondary) Kodaira surfaces,

(2) Minimal properly elliptic surfaces,

(3) Class V II0 surfaces with b2 = 0 (These are classified into either Inoue surfaces or
Hopf surfaces (cf. [25])),

(4) Class V II+
0 surfaces
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(a) b2 = 1 : These surfaces are classified into Kato surfaces with a rational curve
C with a node with C2 = 0 (cf. [26]),

(b) b2 = 2 : These surfaces have a cycle of rational curves and are classified into
Enoki surfaces with b2 = 2, parabolic Inoue surfaces with b2 = 2, hyperbolic
Inoue surfaces and besides, V II0 surfaces contain a smooth rational curve and a
rational curve with a node, all these surfaces are diffeomorphic to Kato surfaces
(cf. [27]),

(c) b2 > 2 : These surfaces are unclassified.

A conjecture of Nakamura asserts that every class V II+
0 surface should be a Kato surface.

Kato surafces are only examples in class V II+
0 .

They have shown that Hopf surfaces admit a static pluriclosed metric with λ = 0.
The following result implies λ = 0 on Hopf surfaces:

Proposition 1.6. ([21, Proposition 5.8]) Let (M4, g, J) be a compact complex surface
with static pluriclosed metric and suppose Σ ⊂ M is a holomorphic curve such that
[Σ] = 0 ∈ H2(M,R). Then λ = 0.

Since the Hopf surface is either an elliptic fibration over P1 or contains exactly two
irreducible curves, there exists at least one holomorphic curve. This holomorphic curve is
null-homologous since we have H2(S3×S1,R) = 0 because the Hopf surface is diffeomor-
phic to S3 × S1. So if there exists a static pluriclosed metric, then we must have λ = 0
from Proposition 1.6. Indeed, the standard Hopf surface H admits a static pluriclosed
metric with λ = 0 (cf. [21, Example 6.1]). We consider the standard Hermitian metric

ωH =
√
−1
ρ2
∂∂̄ρ2, where ρ2 =

∑2
i=1 |zi|2 for (z1, z2) ∈ C2 \ {0}, satisfies that on H,

Ric(ωH) = −
√
−1∂∂̄ log

1

r4
=

2

ρ2

(
δij −

z̄izj

ρ2

)√
−1dzi ∧ dz̄j ≥ 0

since det(ωH) = ρ−4 and the eigenvalues of Ric(ωH) are λ1 = 0, λ2 = 2
ρ2

. The metric ωH is

∂∂̄-closed if its dimension is two, but it is not true in the higer dimensional cases. Indeed,
in the 2-dimensional case, we have

∂∂̄ωH = ∂
(
− 1

ρ4
(z2dz̄2 ∧ dz1 ∧ dz̄1 + z1dz̄1 ∧ dz2 ∧ dz̄2)

)
=

2

ρ6
(z1z̄1 + z2z̄2)dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2 − 2

ρ4
dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2 = 0.

So the metric ωH satisfies the condition Λ(∂∂̄ωH) = 0, equivalent to∑
k

(∂(gH)ij̄
∂zk∂z̄k

+
∂(gH)kk̄
∂zi∂z̄j

)
=
∑
k

(∂(gH)ik̄
∂zk∂z̄j

+
∂(gH)kj̄
∂zi∂z̄k

)
for any i, j, and which also implies that the second Chern-Ricci curvature Ric(ωH) is
nonnegative (cf. [18, Proposition 3.7]). Hence we have cBC1 (H) ≥ 0 and then dg ≥ 0.

Actually, the metric ωH is a static pluriclosed metric with λ = 0 satisfying Φ(ωH) = 0
since we have that (SgH )ij̄ = (gH)ij̄ and (Q1

gH
)ij̄ = (gH)ij̄, where (gH)ij̄ is the associated
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metric, SgH is the first Chern-Ricci curvature and (Q1
gH

)ij̄ = gkl̄Hg
rs̄
HT

H
iks̄T

H
j̄l̄r
, TH is the

torsion of the Chern connection ∇H associated to gH . Hence we have −SgH + Q1
gH

= 0.
On the other hand, a Hopf surface blown up at p > 0 points admits no static pluriclosed
metrics since then we must have b2 = p > 0, which contradicts to λ = 0 (cf. [21,
Proposition 5.9]).

Note that the Hopf manifold S2n+1×S1 with the standard Hermitian metric has strictly
positive first Chern-Ricci curvature and nonnegative second Chern-Ricci curvature, but
it is not Kähler (cf. [18, Proposition 6.4]).

And also they showed that class V II+ surfaces admit no static pluriclosed metrics:

Proposition 1.7. ([21, Proposition 6.3]) Class V II+ surfaces admit no static pluriclosed
metrics.

Proof. First we recall some structural facts for class V II surfaces:

h0,1 = 1, h1,0 = h2,0 = h0,2 = 0, (cBC1 )2 = c2
1 = −b2.

Suppose that there exists a static pluriclosed metric ω satisfying Φ(ω) = λω for some
constant λ on a class V II+ surface M . Let n := b2(M) > 0.

We compute by Stokes Theorem,

λdg = λ

∫
M

ω ∧ cBC1 (M) =

∫
M

Φ(ω) ∧ cBC1 (M) = cBC1 (M)2 = −b2(M) = −n < 0,

which implies that we must have λ 6= 0. Then by applying Proposition 1.8 and Proposition
3.2, M must be Kähler, contradiction.

The result in Proposition 1.7 can be said that it is the important fact for investigating
the topology of class V II+ surface. No static metric pluriclosed metrics on class V II+

surfaces implies that (HCF) must encounter some non-trivial singularities on a class V II+

surface. These singuralities should be closely related to curves on the surface. By the
Kähler-Ricci flow, (−1)-curves are blown-down on a projective algebraic surface as finite
time singularities, and all the (−2)-curves on a minimal projective surface of general type
are contracted as infinite time singularities. As we confirmed, the classification problem
of class V II+ surfaces can be reduced to finding sufficiently many rational curves. One
would be able to settle the problem by finding such curves as singularities of (HCF).

We study remained cases; Kodaira surfaces, minimal non-Kähler properly elliptic sur-
faces and Inoue surfaces.

Let us define the condition of a structure called Hermitian-symplectic.

Definition 1.5. Let (M,J) be a complex manifold of complex dimension n. A Hermitian-
symplectic structure on M is a real 2-form ω̃ such that dω̃ = 0, and the projection of ω̃
onto (1, 1)-tensors determined by J is positive definite. We say that a complex manifold
is Hermitian-symplectic if it admits a Hermitian-symplectic structure.

A Hermitian-symplectic structure is equivalent to ω being a taming form for the com-
plex structure J . We say a symplectic form ω on a manifold tames an almost complex
structure J if ω(X, JX) > 0 for nonzero tangent vectors X.

9



It is well known that the space of symplectic manifolds is strictly larger than the space
of Kähler manifolds. But we do not know whether the space of Hermitian-symplectic
manifolds is strictly larger than the space of Kähler manifolds or not. However, for
surfaces, we have the following result.

Proposition 1.8. (cf. [17, Theorem 1.2], [21, Proposition 1.6]) A complex surface is
Hermitian-symplectic if and only if it is Kähler.

As we see above, the cases of Hopf surfaces and class V II+
0 surfaces have already

been investigated and classified. We study remained cases in the Kodaira-Enriques clas-
sification; primary and secondary Kodaira surfaces, minimal non-Kähler properly elliptic
surfaces and three types of Inoue surfaces. Our main result is as follows:

Theorem 1.5. ([15, Theorem 1.1]) Kodaira surfaces, minimal non-Kähler properly ellip-
tic surfaces and Inoue surfaces admit no static pluriclosed metrics.

The classification problem of static pluriclosed metrics on minimal non-Kähler compact
complex surfaces is thus settled. Non-mimimal case is open as far as I know.

2 Preliminaries

Let (M,J) be a Hermitian manifold of complex dimension n with a Hermitian metric g
on M . Let ω(u, v) = g(Ju, v) be the fundamental 2-form of g. Since g is J-invariant,
(2, 0), (0, 2)-components are vanished and ω is a smooth real (1, 1)-form, which is called
the fundamental (1, 1)-form. In local coordinates, we have ω =

√
−1gij̄dzi ∧ dz̄j. On the

Hermitian vector bundle (T 1,0M, g), the Chern connection ∇ associated to g is the unique
connection which is compatible with the Hermitian metric g and the complex structure
J . Let Ω denote the curvature of the Chern connection ∇ and let Sij̄ = gkl̄Ωkl̄ij̄ denote

the first Chern-Ricci tensor, let Ric(ω)ij̄ = gkl̄Ωij̄kl̄ denote the second Chern-Ricci tensor.
On the holomorphic tangent bundle T 1,0M , there are three connections (cf. [18]);

(1) the complexified Levi-Civita connection ∇L on T 1,0M ,

(2) the Chern connection ∇C on T 1,0M ,

(3) the Bismut connection ∇B on T 1,0M .

It is well known that if M is Kähler, then all three connections are the same.
The second Chern-Ricci curvature Ric(ω) of ω, given locally by Ric(ω) = −

√
−1∂∂̄ logωn,

determines the Bott-Chern cohomology class denoted by cBC1 (M) ∈ H1,1
BC(M,R), where

H1,1
BC(M,R) =

{Kerd : Λ1,1
R (M)→ Λ3

R(M)}√
−1∂∂̄C∞R (M)

.

. We call it the first Bott-Chern class of M . Note that we omit a factor of 2π that appears
in the definition of cBC1 (M), and it is independent of the choice of Hermitian metrics.

Note that a compact complex manifold is said be in Fujiki’s class C if it is bimero-
morphic to a Kähler manifold. Class C includes all Moishezon manifolds since they are
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bimeromorphic to projective manifolds. If a compact complex manifold M is in C, then
the first Bott-Chern class cBC1 (M) = 0 if and only if the first Chern class c1(M) = 0 in
H2(M,R) (cf. [28]). A compact complex manifold in the class C carries a Kähler current
(cf. [6, Theorem 0.7]). It is well-known that every Moishezon surface is Kähler, but there
are many non-Kähler Moishezon manifolds in higher dimension.

Although the second Chern-Ricci curvature represents the first Bott-Chern class, on a
Hermitian manifold, it is possible that the first Chern-Ricci curvature is not in the same
cohomology class as the second Chern-Ricci curvature. For instance, the Hopf surface
M ∼= S3 × S1 with the standard Hermitian metric has strictly positive first Chern-Ricci
curvature and nonnegative second Chern-Ricci curvature, but it is non-Kähler and it has
c1(M) = 0 in H2(M,R), cBC1 (M) 6= 0 and cBC1 (M)2 = c1(M)2 = −b2(M) = 0 (cf. [18,
Proposition 6.4], [28, Example 3.3]).

Let Λr(M) =
⊕

p+q=r Λp,q(M) for 0 ≤ r ≤ 2n denote the decomposition of complex
differential r-forms into (p, q)-forms. The exterior differential operator d decomposes into
the operators ∂ and ∂̄

∂ : Λp,q(M)→ Λp+1,q(M), ∂̄ : Λp,q(M)→ Λp,q+1(M).

Let d∗g denote the L2-adjoint operator of d. Then d∗g decomposes into ∂∗g and ∂̄∗g

∂∗g : Λp,q(M)→ Λp−1,q(M), ∂̄∗g : Λp,q(M)→ Λp,q−1(M).

We here again define a static pluriclosed metric on surfaces.

Definition 2.1. Let (M4, J) be a compact complex surface with a pluriclosed metric ω
on M . We say that ω is a static pluriclosed metric if ω satisfies Φ(ω) = λω for some
constant λ, and Vol(g) =

∫
M
dVg = 1.

Definition 2.2. The Ricci curvatures are called negative (resp. nonnegative, positive,
nonpositive) if the corresponding Hermitian matrices are negative (resp. nonnegative,
positive, nonpositive).

3 Proof of Theorem 1.5

Let us consider a compact complex surface M . We rule out the scaling ambiguity by
fixing the volume to be 1 as in Definition 2.1. Since then, for a static pluriclosed metric ω
satisfying Φ(ω) = λω on M , we have

∫
M
ω ∧ ω =

∫
M
〈ω, ω〉gdVg =

∫
M
|ω|2gdVg = 2, where

|ω|2g = 〈ω, ω〉g = gij̄gkl̄gil̄gkj̄ =
∑2

k=1 δkk = 2, and the volume form dVg is written in local

coordinates z1, z2 as dVg = det g(
√
−1)2dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2, we can easily the following

equality (cf. [21, Proposition 5.2])

(†) 2

∫
M

|∂∗gω|2gdVg = dg − 2λ.

Proof. (The equality (†)))

11



We compute that

−2λ =

∫
M

(−Φ(ω)) ∧ ω

=

∫
M

〈(
∂∂∗gω + ∂̄∂̄∗gω − Ric(ω)

)
, ω
〉
g
dVg

=

∫
M

〈
∂∗gω, ∂

∗
gω
〉
g
dVg +

∫
M

〈
∂̄∗gω, ∂̄

∗
gω
〉
g
dVg −

∫
M

cBC1 (M) ∧ ω

=

∫
M

|∂∗gω|2gdVg +

∫
M

|∂̄∗gω|2gdVg − dg.

Since we have |∂∗gω|2g = |∂̄∗gω|2g, we obtain the equality (†).

We claim the following.

Proposition 3.1. ([15, Proposition 2.1])LetM be a non-Kähler compact complex surface.
If we have dg ≤ 0 for any pluriclosed metric ω, then there is no static pluriclosed metrics
on M .

From this point of view, finding a Hermitian metric with non positive second Chern-
Ricci curvature suffices to prove our main theorem for all three cases. For proving Propo-
sition 3.1, we use the equality (†) and which leads to a contradiction to that non-Kähler
under the assumption dg ≤ 0 for any pluriclosed metric ω. We will crucially use the fact
that static pluriclosed metrics with nonzero constant λ automatically imply that there
exists a Hermitian-symplectic structure (cf. [21, Proposition 5.10]) We need the following
proposition to prove our claim above:

Proposition 3.2. ([21, Proposition 5.10]) Let (M,J) be a compact complex manifold
with a static metric ω. If λ 6= 0, then M is a Hermitian-symplectic manifold.

Proof. (Proposition 3.1.) We assume that there exists a static pluriclosed metric ω
on M , then we have from the equality (†),

2

∫
M

|∂∗gω|2gdVg = dg − 2λ ≤ −2λ

since we have assumed that dg ≤ 0 for any pluriclosed metric ω.
If λ ≥ 0, then we have

∫
M
|∂∗gω|2gdVg = 0 and ∂∗gω = 0, equivalently we have ∂ω = 0

since we have∫
M

|∂∗gω|2gdVg =

∫
M

〈∂∗gω, ∂∗gω〉gdVg =

∫
M

〈∂ω, ∂ω〉gdVg =

∫
M

|∂ω|2gdVg.

This means that ω is a Kähler metric on M , which contradicts with that M is non-Kähler.
Hence we must have λ < 0. Since then we especially have λ 6= 0, we may apply Proposition
3.2, and hence M must be Hermitian-symplectic. From Proposition 1.8, then M must
be Kähler, which is again a contradiction. Therefore, M admits no static pluriclosed
metrics.
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First, let M be a Kodaira surface and ω be a pluriclosed metric on M . A Kodaira
surface is a non-Kähler minimal compact complex surface with the Kodaira dimension
κ(M) = 0, which can be classified into the following two cases: A primary Kodaira
surface is a surface with b1(M) = 3, admitting a holomorphic locally trivial fibration over
an elliptic curve with an elliptic curve as typical fibre. A secondary Kodaira surface is
a surface with b1(M) = 1, admitting a primary Kodaira surface as unramified covering.
These surfaces are elliptic fibre spaces over rational curves. In either case, since some
power of the canonical bundle K⊗lM = lKM , for some l ≥ 1 is holomorphically trivial (i.e.,
sometimes then KM is called holomorphically torsion and satisfies K⊗lM

∼= OM , where OM
denotes the product trivial bundle), then we have cBC1 (K⊗lM ) = lcBC1 (KM) = 0 and so
cBC1 (M) = −cBC1 (KM) = 0 (cf. [28, Proposition 1.1, Theorem 1.4], [31]). Hence there
exists a Gauduchon metric ω0 on M such that Ric(ω0) = 0 (cf. [24], [29]). Then we have
by Stokes Theorem, for any pluriclosed metric ω,

dg =

∫
M

cBC1 (M)∧ω =

∫
M

Ric(ω)∧ω =

∫
M

(Ric(ω)−Ric(ω0))∧ω =

∫
M

√
−1∂∂̄f∧ω = 0,

where f is a real-valued smooth function on M and we used that ω is pluriclosed by
integrating by parts at the last equality. Since we have dg = 0 for any pluriclosed metric
ω on Kodaira surfaces M , there is no static pluriclosed metric on M by Proposition 3.1.

Second, let M be a non-Kähler properly elliptic surface. Here, non-Kähler means
that M admits no Kähler metrics. A non-Kähler properly elliptic surface is a compact
complex surface with its first Betti number b1(M) = odd and the Kodaira dimension
κ(M) = 1 which admits an elliptic fibration π : M → S to a smooth compact curve
S. The Kodaira-Enriques classification tells us that minimal non-Kähler properly elliptic
surfaces are the only one case for minimal non-Kähler compact complex surfaces with the
Kodaira dimension κ = 1.

We assume that M is minimal, that is, there is no (−1)-curve on M . It has been
shown that the universal cover of M is C × H (cf. [16, Theorem 28]), where H is the
upper half plane in C. Also, it is known that there exists a finite unramified covering
p : M ′ → M with a covering transformation group Γ(p) := Aut(p), where Aut(p) is the
set of automorphisms of p, i.e., any τ ∈ Aut(p) is biholomorphic τ : M ′ ∼= M ′, satisfies
p ◦ τ = p and is called a covering transformation. Here M ′ is a minimal properly elliptic
surface, π′ : M ′ → S ′ is an elliptic fiber bundle over a compact Riemann surface S ′ of genus
at least 2, with fiber an elliptic curve E (since Γ(p) acts also S ′, π′ is Γ(p)-equivalent) (cf.
[4, Lemma 1, 2]). The curve S ′ is a finite cover of S ramified at the images of the multiple
fibers of π (precisely equal to the image of the quotient map q : S ′ → S of the set of
finitely many fixed points under the Γ(p)-action), with quotient S = S ′/Γ(p), π : M → S
is equal to the Γ(p)-quotient of π′ : M ′ → S ′ and so that the map q satisfies q ◦ π′ = π ◦ p
(cf. [14], [30]).

Note that when π : M → S is not a fiber bundle, π has no singular fibers, but it
might have multiple fibers. Let D ⊂M be the set of all multiple fibers of π, so that π(D)
consists of finitely many orbifold points, which is precisely equal to the set of branch
points, also equal to the image of the map q of fixed points under the Γ(p)-action on S ′.

By considering the following holomorphic covering map

h : C×H → C∗ ×H, h(z, z′) = (e−
z
2 , z′),
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we may work with C∗ ×H instead of C×H, where C∗ := C \ {0}. We will write (z1, z2)
for the coordinates on C∗ ×H and zi = xi +

√
−1yi, xi, yi ∈ R for i = 1, 2, which means

that we have y2 > 0.
It has been shown in [19] that there exists a discrete subgroup Γ ⊂ SL(2,R) with

H/Γ = S, together with µ ∈ C∗ with |µ| 6= 1 and C∗/〈µ〉 = E, and with a character
χ : Γ→ C∗ such that M ′ is biholomorphic to the quotient of C∗×H by the Γ×Z -action
defined by((a b

c d

)
, n
)
· (z1, z2) =

(
(cz2 + d) · z1 · µn · χ

((a b
c d

))
,
az2 + b

cz2 + d

)
,

and the map π′ : M ′ → S ′ is induced by the projection C∗ ×H → H (cf. [3, Proposition
2], [34, Theorem 7.4]). We define two forms on C∗ ×H below:

α :=

√
−1

2y2
2

dz2 ∧ dz̄2, γ :=
√
−1(− 2

z1

dz1 +

√
−1

y2

dz2) ∧ (− 2

z̄1

dz̄1 −
√
−1

y2

dz̄2).

Note that we may work in a single compact fundamental domain for M ′ in C∗ × H
using z1, z2 as local coordinates and we may assume that z1, z2 are uniformly bounded
and that y2 is uniformly bounded below away from zero.

Lemma 3.1. The forms α and γ are invariant under the Γ× Z -action.

Proof. It suffices to show that the forms on C∗ ×H;
√
−1

y2
2

dz2 ∧ dz̄2, −
2

z1

dz1 +

√
−1

y2

dz2

are Γ × Z -invariant. For any (A, n) ∈ Γ × Z, where A =

(
a b
c d

)
with ad − bc = 1, we

compute
√
−1

Im
(
az2+b
cz2+d

)d(az2 + b

cz2 + d

)
∧ d
(az̄2 + b

cz̄2 + d

)
=

√
−1

y2
2

|cz2 + d|4

(cz2 + d)2(cz̄2 + d)2
dz2 ∧ dz̄2

=

√
−1

y2
2

dz2 ∧ dz̄2

and

− 2

(cz2 + d) · z1 · µn · χ(A)
d((cz2 + d) · z1 · µn · χ(A)) +

√
−1

Im
(
az2+b
cz2+d

)d(az2 + b

cz2 + d

)

= − 2c

cz2 + d
dz2 −

2

z1

dz1 +

√
−1

y2

|cz2 + d|2

(cz2 + d)2
dz2

= − 2

z1

dz1 +

√
−1

y2

( |cz2 + d|2 +
√
−12cy2(cz2 + d)

(cz2 + d)2

)
dz2

= − 2

z1

dz1 +

√
−1

y2

dz2

Therefore, the forms α and γ are invariant under the Γ× Z -action.
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It follows that they descend to M ′ and we may define a smooth strictly positive volume
form Ω on M ′ by

Ω = 2α ∧ γ

since the volume form Ω is invariant under the Γ × Z -action as we see in the following
lemma.

Lemma 3.2. The volume form Ω is Γ× Z -invariant and satisfies

Ric(Ω) = −α ∈ cBC1 (M ′) = −cBC1 (KM ′),

where KM ′ is the canonical bundle over M ′.

Proof. Since the forms α and γ are Γ× Z -invariant from Lemma 3.1, so is Ω.
We compute

Ric(Ω) = −
√
−1∂∂̄ log Ω

= −
√
−1∂∂̄ log

( 4

y2
2|z1|2

)
=
√
−12∂∂̄ log y2

=
√
−12∂

(√−1

2y2

)
dz̄2

=
√
−1
(
−
√
−1

y2
2

)(
−
√
−1

2

)
dz2 ∧ dz̄2

= −
√
−1

2y2
2

dz2 ∧ dz̄2 = −α.

The form α induces a unique Kähler-Einstein metric ωS′ with Ric(ωS′) = −ωS′ on S ′.
From Lemma 3.2, we obtain that

Ric(Ω) = −π′∗ωS′ = π′∗Ric(ωS′).

It follows that we have that
cBC1 (M ′) = π′∗c1(S ′).

Since the genus of S ′ is at least 2, we have c1(S ′) < 0. Therefore we have cBC1 (M ′) ≤ 0,
which implies that the canonical bundle KM ′ is nef. We say that a holomorphic line
bundle L over a compact complex surface N is nef if we have

∫
C
cBC1 (L) ≥ 0 for all curves

C in N . If C is not smooth, then we integrate over Creg, the set of points p ∈ C for which
C is a submanifold of N near p, since Stokes’ Theorem still holds for Creg (cf. [12, p.33]).

Lemma 3.3. If the canonical bundle KM ′ is nef, then the canonical bundle KM is nef.

Proof. Since p : M ′ →M is as unramified finite covering, i.e., for a sufficiently small
open set U ⊂ M we have that p−1(U) is a disjoint union of finitly many copies Uj of U
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and then p : Uj → U is biholomorphic for each j, we may compute that for any Hermitian
metric ω and any curve C on M ,∫

C

(−Ric(ω)) =

∫
p∗C

(−p∗Ric(ω)) =

∫
p∗C

(−Ric(p∗ω)) =

∫
p∗C

cBC1 (KM ′) ≥ 0

since K ′M is assumed to be nef, where p∗ω is Hermitian and p∗C is a curve on M ′. Hence
KM is also nef.

If we have cBC1 (KM) = −cBC1 (M) < 0, for any Hermitian metric ωM on M , there exists
a real smooth function F on M such that −Ric(ωM) +

√
−1∂∂̄F < 0 and then for any

curve C in M , by Stokes Theorem,∫
C

cBC1 (KM) =

∫
C

(−Ric(ωM)) =

∫
C

(−Ric(ωM) +
√
−1∂∂̄F ) < 0,

which contradicts to the result that KM is nef in Lemma 3.3. Hence, that cBC1 (M ′) ≤ 0
gives us that cBC1 (M) ≤ 0. With using this result, we obtain that dg ≤ 0 for any pluriclosed
metric ω. By Proposition 3.1, there is no static pluriclosed metric on M .

Finally, we study a static pluriclosed metric on Inoue surfaces. Inoue surfaces form
three families, SM , S+

N,p,q,r;t and S−N,p,q,r (cf. [13], [30]). First of all, we construct the
Inoue surface of type SM . Let M ∈ SL(3,Z) be a matrix with one real eigenvalue τ > 1
and two complex conjugate eigenvalues η 6= η̄. Let (l1, l2, l3) be a real eigenvector for
M with eigenvalue τ and (m1,m2,m3) be an eigenvector with eigenvalue η. We write
z1 = x1 +

√
−1y1 for the coordinate on C and z2 = x2 +

√
−1y2 for the coordinate on

H = {y2 > 0}, the upper half plane in C. Let GM be the group of automorphisms of
C×H, which is generated by

f0(z1, z2) = (ηz1, τz2), fi(z1, z2) = (z1 +mi, z2 + li)

for i = 1, 2, 3, (z1, z2) ∈ C × H, 1 ≤ i ≤ 3. We define SM to be the quotient surface
(C×H)/GM , which is a T 3-torus bundle over a circle.

We consider the subgroup G̃M ⊂ GM generated by f1, f2 and f3, which is isomorphic
to Z3 and acts on C×H properly discontinuously and freely, with quotient the product
T 3×R>0. If Γ is a discrete group and X is a Hausdorff topological space such that Γ acts
onX, we say that this action is properly discontinuously if given two points x, y ∈ X, there
are open neighborhoods Ux of x and Uy of y for which (γUx) ∩ Uy 6= ∅ for only finitely
many γ ∈ Γ, equivalent to that X/Γ is Hausdorff (cf. [5]). We say that a toplogical
transformation group Γ acts on a topological space X freely if Γ satisfies that if γx = x
for some x ∈ X, then γ = e, where e ∈ Γ is unit.

The projection π : T 3×R>0 → R>0 is induced by (z1, z2) 7→ Imz2 for (z1, z2) ∈ C×H.
Since f0 descends to a map T 3 × R>0 → T 3 × R>0, we obtain that

SM = (T 3 × R>0)/〈f0〉,

and since τ ∈ R>1, f0 maps Ty = π−1(y) to Tτy = π−1(τy). Especially, we have a
diffeomorphism F0 : T1 → Tτ induced by f0. Then we have that SM is diffeomorphic to
the quotient space (T 3 × [1, τ ])/ ∼, where (p, 1) ∼ (F0(p), τ).
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We may assume that z1 and z2 are uniformly bounded and that y2 is uniformly bounded
below away from zero since we may work in a single compact fundamental domain for SM
in C×H.

On C×H, we define nonnegative (1, 1)-forms α′ and β by

α′ :=

√
−1

4y2
2

dz2 ∧ dz̄2, β :=
√
−1y2dz1 ∧ dz̄1.

Since these forms are invariant under the GM -action (note that τ |η|2 = 1), they descend
to SM . We then can define a Hermitian metric on SM , so called the Tricerri metric ωT
(cf. [9, Section 2], [30, Section 5] and [32]) by ωT := 4α′ + β, which is pluriclosed on SM .
Then we have

Ric(ωT ) = −
√
−1∂∂̄ logω2

T =
√
−1∂∂̄ log y2 = −α′ ≤ 0

and cBC1 (SM) ≤ 0, which implies that we have dg ≤ 0 for any pluriclosed metric ω.
We next construct the Inoue surface of type S+

N,p,q,r;t. Let N = (nij) ∈ SL(2,Z) with

two real eigenvalues τ > 1 and 1
τ
. Let (a1, a2) and (b1, b2) be two real eigenvectors for N

with eigenvalues τ and 1
τ
, respectively. Fix integers p, q, r ∈ Z with r 6= 0 and a complex

number t ∈ C. Define ei := 1
2
ni1(ni1 − 1)a1b1 + 1

2
ni2(ni2 − 1)a2b2 + ni1ni2b1a2 for i = 1, 2.

Using N , ai, bi, p, q, r, one gets two real numbers (c1, c2) as solutions of the linear equation
(c1, c2) = (c1, c2) ·N t + (e1, e2) + b1a2−b2a1

r
(p, q). Let G+

N be the group of automorphism of
C×H generated by

f0(z1, z2) = (z1+t, τz2), fi(z1, z2) = (z1+biz2+ci, z2+ai), f3(z1, z2) = (z1+
b1a2 − b2a1

r
, z2)

for i = 1, 2, (z1, z2) ∈ C×H. We define S+
N,p,q,r;t to be the quotient surface (C×H)/G+

N ,
which is diffeomorphic to a bundle over a circle with fiber a compact 3-manifold X.

We consider the subgroup G̃+
N ⊂ G+

N generated by f1, f2 and f3. Write zi = xi+
√
−1yi

for i = 1, 2. For fixed y2 = Imz2, the group G̃+
N acts on {(x2, y2, z1)|x2 ∈ R, z1 ∈ C} ∼= R3

properly discontinuously and freely, with quotient a compact 3-manifold Xy2 . Compact
3-manifolds Xy for different values of y are all diffeomorphic to a fixed compact 3-manifold
X. We may consider that the group G̃+

N acts on C×H with the quotient diffeomorphic
to the product X ×R>0 with the projection π : X ×R>0 → R>0 induced by (z1, z2) 7→ y2

and with Xy2 = π−1(y2). Since f0 descends to a map X ×R>0 → X ×R>0, we have that

S+
N,p,q,r;t = (X × R>0)/〈f0〉.

Since τ ∈ R>1, f0 maps X1 to Xτ and then induces a diffeomorphism F0 of X such that
S+
N,p,q,r;t is diffeomorphic to the quotient space (X × [1, τ ])/ ∼, where (p, 1) ∼ (F0(p), τ).

We finally construct the Inoue surface of type S−N,p,q,r. Let N = (nij) ∈ GL(2,Z) with

detN = −1 and with two real eigenvalues τ > 1 and − 1
τ
. Let (a1, a2) and (b1, b2) be two

real eigenvectors for N with eigenvalues τ and − 1
τ
, respectively. Fix integers p, q, r ∈ Z

with r 6= 0. One gets two real numbers (c1, c2) as solutions of the following linear equation
−(c1, c2) = (c1, c2) · N t + (e1, e2) + b1a2−b2a1

r
(p, q), where ei for each i = 1, 2 is defined as

in the case S+
N,p,q,r;t. Let G−N be the group of automorphism of C×H generated by

f0(z1, z2) = (−z1, τz2), fi(z1, z2) = (z1+biz2+ci, z2+ai), f3(z1, z2) = (z1+
b1a2 − b2a1

r
, z2)
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for i = 1, 2 and for (z1, z2) ∈ C × H. We define S−N,p,q,r to be the quotient surface

(C×H)/G−N . Note that every surface S−N,p,q,r has as an unramified double cover an Inoue

surface S+
N2,p′,q′,r;0 for suitable integers p′, q′. In fact, we have the involution of S+

N2,p′,q′,r;0:

ι(z1, z2) = (−z1, τz2) satisfies ι2 = Id and S−N,p,q,r = S+
N2,p′,q′,r;0/ι.

As in the case of the surface SM , we may assume that local holomorphic coordinates
z1 and z2 are uniformly bounded and that y2 is uniformly bounded below away from zero.

Since τ > 1, we may write Imt = m log τ for some m ∈ R. Note that t is real if and
only if m = 0. We define (1, 1)-forms α′′ and γ′ on C×H by

α′′ :=

√
−1

2y2
2

dz2 ∧ dz̄2, γ′ :=
√
−1
(
dz1 −

y1 −m log y2

y2

dz2

)
∧
(
dz̄1 −

y1 −m log y2

y2

dz̄2

)
.

Since these forms are invariant under the G+
N -action, they descend to S+

N,p,q,r;t.

Then we can define the Vaisman metric on S+
N,p,q,r;t ωV := 2α′′ + γ′, which is a pluri-

closed metric on S+
N,p,q,r;t (cf. [9, Section 3], [30, Section 6] and [33]). This metric satisfies

on S+
N,p,q,r;t,

Ric(ωV ) = −
√
−1∂∂̄ logω2

V =
√
−1∂∂̄ log y2

2 = −α′′ ≤ 0.

Hence we obtain that cBC1 (S+) ≤ 0 and that dg ≤ 0 for any pluriclosed metric ω on
S+
N,p,q,r;t.

In the case of S−N,p,q,r for a matrix N ∈ GL(2,Z) with detN = −1 and arbitrary fixed
p, q, r ∈ Z with r 6= 0, we concider forms on C×H

α′′ =

√
−1

2y2
2

dz2 ∧ dz̄2, γ′− :=
√
−1
(
dz1 −

y1

y2

dz2

)
∧
(
dz̄1 −

y1

y2

dz̄2

)
,

which are invariant under the G−N -action and so they descend to S−N,p,q,r. Hence we can

define a Hermitian metric on S−N,p,q,r, ω
−
V := 2α′′ + γ′−, which is pluriclosed.

Denote σ : S+
N2,p′,q′,r;0 → S−N,p,q,r the quotient map for suitable p′, q′ ∈ Z, which is an

unramified double covering. We pull back the metric ω−V via σ to S+
N2,p′,q′,r;0. The metric

σ∗ω−V coincides with the metric (ωV )0 which is the metric ωV with m = 0. Then we have

σ∗Ric(ω−V ) = Ric(σ∗ω−V ) = Ric((ωV )0) = −α′′ ≤ 0.

Since α′′ is invariant under the G+
N2 and G−N -actions, we obtain on S−N,p,q,r,

Ric(ω−V ) = −α′′ ≤ 0.

Hence we obtain that cBC1 (S−) ≤ 0 and this implies that we have dg ≤ 0 for any pluriclosed
metric ω on S−N,p,q,r. By applying Proposition 3.1, we conclude that Inoue surafces of all
types SM , S+ and S− admit no static pluriclosed metrics.

In all cases; Kodaira surfaces, minimal non-Kähler properly elliptic surfaces and Inoue
surfaces of all three types, we can obtain dg ≤ 0 for any pluriclosed metric ω and hence
we conclude that these surfaces admit no static pluriclosed metrics.
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