6次元球面のラグランジュ部分多様体と 結合的グラスマン多様体

Lagrangian submanifolds of S^6 and the associative Grassmann manifold

Kazumi Tsukada *

It is well-known that a six-dimensional sphere S^6 admits an almost complex structure defined by its natural inclusion in the space Im $\mathbb O$ of imaginary octonions. This almost complex structure is not integrable but is nearly Kähler with respect to the induced Riemannian metric from the inner product in Im $\mathbb O$.

An oriented three-dimensional subspace of $\operatorname{Im}\mathbb{O}$ is said to be associative if it is a canonically oriented imaginary part of some quaternion subalgebra of \mathbb{O} . The set of all associative subspaces is called the associative Grassmann manifold, which is denoted by $\widetilde{\operatorname{Gr}}_{ass}(\operatorname{Im}\mathbb{O})$. Then it is known that $\widetilde{\operatorname{Gr}}_{ass}(\operatorname{Im}\mathbb{O})$ is an eight-dimensional compact symmetric quaternionic Kähler manifold.

We focus on Lagrangian submanifolds of S^6 and study the relationship of such submanifolds with the geometry of $\widetilde{\mathrm{Gr}}_{ass}(\mathrm{Im}\mathbb{O})$.

This is a joint work with K.Enoyoshi ([3]).

§1 The algebra of octonions and the Lie group G_2

In this section, we recall fundamental properties of octonions following R. Harvey and H. B. Lawson [5]. Let $\mathbb{H} = \{x1 + yi + zj + wk \mid x, y, z, w \in \mathbb{R}\} \cong \mathbb{R}^4$ $(i^2 = j^2 = k^2 = -1, ij = -ji = k)$ be the algebra of quaternions and Sp(1) the group of unit quaternions. We denote the subspace of imaginary quaternions by ImH. The algebra \mathbb{O} of octonions is a normed algebra whose the multiplication is given by

$$(a + b\varepsilon)(c + d\varepsilon) = (ac - \bar{d}b) + (da + b\bar{c})\varepsilon$$
 $a, b, c, d \in \mathbb{H}$

([5]). Here \bar{a} is the quaternionic conjugation for $a \in \mathbb{H}$. The algebra \mathbb{O} is neither commutative nor associative. Let $\mathrm{Im}\mathbb{O} = \mathrm{Im}\mathbb{H} \oplus \mathbb{H}\varepsilon$ be the subspace of all imaginary parts of octonions, which is identified with seven-dimensional Euclidian space \mathbb{R}^7 .

^{*}The author is supported by JSPS KAKENHI Grant Number 18K03271

We define the alternating trilinear form φ on Im \mathbb{O} by

$$\varphi(x, y, z) = \langle x, yz \rangle.$$

The 3-form φ is called the associative calibration on Im \mathbb{O} ([5] p.113 Definition 1.5). The Lie group G_2 is defined by

$$G_2 = \operatorname{Aut}(\mathbb{O}) = \{ g \in GL(\mathbb{O}) | g(xy) = g(x)g(y), \text{ for any } x, y \in \mathbb{O} \}.$$

It is well-known that the Lie group G_2 is 14-dimensional and simple ([5]). Every automorphism of \mathbb{O} fixes the subspace $\mathbb{R} \cdot 1 \subset \mathbb{O}$ and leaves the subspace $\mathbb{Im} \mathbb{O}$ invariant. We also have the facts that G_2 is a subgroup of $SO(\mathbb{Im} \mathbb{O}) \cong SO(7)$ and that the following holds:

$$G_2 = \{ g \in O(7) | g^* \varphi = \varphi \}.$$

For the pair of unit quaternions $(q_1, q_2) \in Sp(1) \times Sp(1)$ and $a + b\varepsilon \in \mathbb{O} = \mathbb{H} \oplus \mathbb{H}\varepsilon$, we set

$$\rho(q_1, q_2)(a + b\varepsilon) = q_1 a q_1^{-1} + (q_2 b q_1^{-1})\varepsilon.$$

Then we see that $\rho(q_1, q_2)$ belongs to G_2 and the kernel of ρ is $\{\pm(1, 1)\}$. Hence ρ is an action of $Sp(1) \times Sp(1)/\{\pm(1, 1)\} \cong SO(4)$ on \mathbb{O} .

§2 The associative Grassmann manifold $\widetilde{\mathrm{Gr}}_{ass}(\mathrm{Im}\mathbb{O})$ and its tangent space

We denote by $\widetilde{\operatorname{Gr}}_3(\operatorname{Im}\mathbb{O})$ the Grassmann manifold of all oriented three-dimensional subspaces in $\operatorname{Im}\mathbb{O}$ with $\dim \widetilde{\operatorname{Gr}}_3(\operatorname{Im}\mathbb{O}) = 12$. $\widetilde{\operatorname{Gr}}_3(\operatorname{Im}\mathbb{O})$ is isomorphic to the Riemannian symmetric space $SO(7)/SO(3) \times SO(4)$. If $\zeta \in \widetilde{\operatorname{Gr}}_3(\operatorname{Im}\mathbb{O})$ is the canonically oriented imaginary part of some quaternion subalgebra of \mathbb{O} , then ζ is said to be an associative subspace. The set of all associative subspaces is called the associative Grassmann manifold denoted by $\widetilde{\operatorname{Gr}}_{ass}(\operatorname{Im}\mathbb{O})$. Then it is known that $\widetilde{\operatorname{Gr}}_{ass}(\operatorname{Im}\mathbb{O})$ is an eight-dimensional compact symmetric quaternionic Kähler manifold which is described as $G_2/SO(4)$ (cf. [5],[11]). Moreover we see that $\widetilde{\operatorname{Gr}}_{ass}(\operatorname{Im}\mathbb{O})$ is a totally geodesic submanifold of $\widetilde{\operatorname{Gr}}_3(\operatorname{Im}\mathbb{O})$.

The associative calibration φ can be viewed as a function on $\widetilde{Gr}_3(\operatorname{Im}\mathbb{O})$. The following has been shown by Harvey and Lawson;

Proposition 2.1 ([5]) For $\zeta \in \widetilde{\mathrm{Gr}}_3(\mathrm{Im}\mathbb{O}), \ \varphi(\zeta) \leq 1$ with the equality if and only if ζ is associative.

Then we define level sets $\widetilde{M}(t)$ of $\widetilde{\mathrm{Gr}}_3(\mathrm{Im}\mathbb{O})$ for $-1 \leq t \leq 1$ by

$$\widetilde{M}(t) = \{ \zeta \in \widetilde{\operatorname{Gr}}_3(\operatorname{Im}\mathbb{O}) \mid \varphi(\zeta) = t \}.$$

The Lie group G_2 acts transitively on each $\tilde{M}(t)$ $(-1 \le t \le 1)$. The level set $\tilde{M}(1)$ coincides with the associative Grassmann manifold $\widetilde{\operatorname{Gr}}_{ass}(\operatorname{Im}\mathbb{O})$. Reversing the orientation of subspaces

in $\tilde{M}(-1)$, we see that $\tilde{M}(-1)$ is isometric to $\tilde{M}(1)$. For -1 < t < 1, $\tilde{M}(t)$ is diffeomorphic to $G_2/SO(3)$.

We will describe the tangent space of the associative Grassmann manifold $\widetilde{\mathrm{Gr}}_{ass}(\mathrm{Im}\mathbb{O})$ following F. Nakata ([9]). By the standard argument using the theory of vector bundles for the differential geometry of Grassmann manifolds, the tangent space of the Grassmann manifold at $\xi \in \widetilde{\mathrm{Gr}}_3(\mathrm{Im}\mathbb{O})$ is identified with the space $\mathrm{Hom}(\xi,\xi^{\perp})$ of linear homomorphisms of ξ to ξ^{\perp} , where ξ^{\perp} denotes the orthogonal complement of ξ in $\mathrm{Im}\mathbb{O}$. The tangent space of the associative Grassmann manifold $\widetilde{\mathrm{Gr}}_{ass}(\mathrm{Im}\mathbb{O})$ is described as follows:

$$T_{\xi}\widetilde{\mathrm{Gr}}_{ass}(\mathrm{Im}\mathbb{O}) \simeq \{ \gamma \in \mathrm{Hom}(\xi, \xi^{\perp}) \mid \gamma(e_1)e_1 + \gamma(e_2)e_2 + \gamma(e_3)e_3 = 0 \},$$

where $\{e_1, e_2, e_3\}$ denotes an orthonormal basis of ξ . This description is due to Nakata ([9]). We denote the right hand side in the above equation by $\operatorname{Hom}_{ass}(\xi, \xi^{\perp})$.

 $\S 3$ The nearly Kähler structure and submanifolds of S^6

Let S^6 be the unit sphere in Im $\mathbb O$ centered at the origin. Then S^6 has an almost complex structure J at $p \in S^6$ defined by

$$J_p x = px, \quad x \in T_p S^6.$$

It is known that this almost complex structure J is not integrable. The Riemannian metric on S^6 is induced from the inner product \langle,\rangle on $\text{Im}\mathbb{O}\cong\mathbb{R}^7$. The induced metric \langle,\rangle is Hermitian with respect to J. Then we define the Kähler form ω of S^6 at $p\in S^6$ by

$$\omega_p(x,y) = \langle J_p x, y \rangle, \quad x, y \in T_p S^6.$$

Then $(S^6, J, \langle,\rangle)$ is an almost Hermitian manifold. Moreover it satisfies $(\tilde{\nabla}_X J)X = 0$ for all vector fields X on S^6 , where $\tilde{\nabla}$ denotes the Riemannian connection. An almost Hermitian manifold with this property is called a *nearly Kähler manifold*. We have the fact that the group of automorphisms of $(S^6, J, \langle,\rangle)$ is isomorphic to G_2 .

The nearly Kähler six-sphere has two typical classes of submanifolds: namely the class of almost complex submanifolds and that of Lagrangian submanifolds or three-dimensional totally real submanifolds. A. Gray ([4]) showed that there do not exist four-dimensional almost complex submanifolds in S^6 . R. L. Bryant([1]) proved that every compact Riemann surface can be realized as an almost complex curve in S^6 . Many researchers have studied two-dimensional almost complex submanifolds or almost complex curves and obtained fruitful results.

We recall Lagrangian submanifolds of six-sphere. We define a trilinear form ϕ and a complex-valued form Ω on S^6 using the associative calibration φ as follows:

$$\phi(x, y, z) = \varphi(x, y, J_p z) \qquad x, y, z \in T_p S^6$$

$$\Omega(x, y, z) = \phi(x, y, z) + \sqrt{-1} \varphi(x, y, z)$$

Then Ω is a (3,0)-form with respect to J. We have the following interesting relations between the Kähler form and the associative calibration.

Proposition 3.1 (cf. K.Mashimo [8]) For $p \in S^6$,

- $(1) \ \omega_p = p \rfloor \varphi$
- (2) $d\omega = 3\varphi|_{S^6}$
- (3) $d\phi = 4\omega \wedge \omega$

We state the special Lagrangian geometry of S^6 with respect to Ω . A three-dimensional subspace ζ of T_pS^6 is called a Lagrangian subspace if it holds that $J_px \perp \zeta$ for all $x \in \zeta$. The condition is equivalent to $\omega|_{\zeta} = 0$. We call a three-dimensional submanifold M of S^6 a Lagrangian submanifold if the tangent space T_pM is a Lagrangian subspace at each point $p \in M$. The condition implies that ω restricted to M vanishes. Many researchers refer to Lagrangian submanifolds in S^6 as three-dimensional totally real submanifolds of S^6 . The following remarkable theorem by N.Ejiri is known:

Theorem 3.2([2]) Any Lagrangian submanifold of S^6 is orientable and minimal.

We call an oriented Lagrangian subspace ζ a special Lagrangian subspace with respect to Ω if $\Omega(v_1, v_2, v_3) = 1$ for a positively oriented orthonormal basis $\{v_1, v_2, v_3\}$ of ζ . An oriented Lagrangian submanifold M is called a special Lagrangian submanifold if the tangent space T_pM is a special Lagrangian subspace at each point $p \in M$. From the view point of calibrated geometry, Mashimo showed the following:

Theorem 3.3([8]) If a three-dimensional oriented submanifold M of S^6 is Lagrangian, then it is a special Lagrangian submanifold, if necessary, we reverse its orientation.

We review basic facts on special Lagrangian subspaces of the tangent space of S^6 .

Lemma 3.4 Let ζ be a three-dimensional oriented subspace of T_pS^6 . Then either ζ or $-\zeta$ is special Lagrangian if and only if ζ is a Lagrangian subspace and $\varphi(\zeta) = 0$.

Lemma 3.5 Let ζ be a three-dimensional oriented subspace of T_pS^6 . If ζ is special Lagrangian, $-J_p\zeta$ is associative. Conversely, if ζ is associative, $J_p\zeta$ is special Lagrangian.

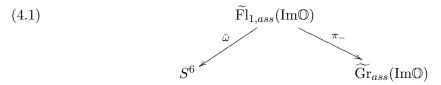
§4 The two double fibrations

Nakata ([9]) showed the following double fibration motivated to construct a theory of Penrose type twistor correspondence for the geometries of S^6 and $\widetilde{\mathrm{Gr}}_{ass}(\mathrm{Im}\mathbb{O})$. Let $\widetilde{\mathrm{Fl}}_{1,ass}(\mathrm{Im}\mathbb{O})$ be a flag manifold defined by

$$\widetilde{\mathrm{Fl}}_{1,ass}(\mathrm{Im}\mathbb{O}) = \{(p,\xi) \in S^6 \times \widetilde{\mathrm{Gr}}_{ass}(\mathrm{Im}\mathbb{O}) \ | \ p \in \xi \ \}.$$

We define maps $\bar{\omega}$ and π_- of $\widetilde{\mathrm{Fl}}_{1,ass}(\mathrm{Im}\mathbb{O})$ onto S^6 and $\widetilde{\mathrm{Gr}}_{ass}(\mathrm{Im}\mathbb{O})$ by the projections to the

first factor and the second factor, respectively.



These fibrations are G_2 -equivariant. He proved the following interesting result:

Theorem 4.1([9]) In the double fibration (4.1), for each $p \in S^6$, $\pi_-(\bar{\omega}^{-1}(p))$ is a four-dimensional totally geodesic and quaternionic submanifold of $\widetilde{\operatorname{Gr}}_{ass}(\operatorname{Im}\mathbb{O})$ which is isomorphic to $\mathbb{C}P^2$ and for each $\xi \in \widetilde{\operatorname{Gr}}_{ass}(\operatorname{Im}\mathbb{O})$, $\bar{\omega}(\pi_-^{-1}(\xi))$ is a two-dimensional sphere S^2 which is totally geodesic and almost complex in S^6 .

We consider another double fibration to associate the geometry of the associative Grassmann manifold with Lagrangian submanifolds of S^6 . As a preparation of constructing the fibration, we recall the triple cross product:

$$x \times y \times z = \frac{1}{2} (x(\bar{y}z) - z(\bar{y}x))$$
 for $x, y, z \in \mathbb{O}$,

where \bar{y} is the octonion conjugation for $y \in \mathbb{O}$. It is known that $\langle x, y \times z \times w \rangle$ are alternating in $x, y, z, w \in \mathbb{O}$ and that the real part of $x \times y \times z = \varphi(x, y, z)$ for $x, y, z \in \text{Im}\mathbb{O}$. We recall the level set $\tilde{M}(0)$ defined in Section 2:

$$\widetilde{M}(0) = \{ \zeta \in \widetilde{\mathrm{Gr}}_3(\mathrm{Im}\mathbb{O}) \mid \varphi(\zeta) = 0 \}.$$

Let $\{v_1, v_2, v_3\}$ be a positively oriented orthonormal basis of $\zeta \in \tilde{M}(0)$ and put $p = -v_1 \times v_2 \times v_3 = v_1(v_2v_3)$. Then since the real part of $v_1 \times v_2 \times v_3$ is equal to $\varphi(\zeta)$, we have $p \in \text{Im}\mathbb{O}$. Moreover, it holds that |p| = 1 and p is orthogonal to ζ . Then ζ is a subspace of T_pS^6 . Moreover ζ is a special Lagrangian subspace, hence by Lemma 3.5, $-J_p\zeta$ is associative. By these, we can define another double fibration:

(4.2)
$$M(0)$$

$$\widetilde{Gr}_{ass}(\operatorname{Im}\mathbb{O}).$$

$$\chi(\zeta) = -v_1 \times v_2 \times v_3 = p, \quad \pi(\zeta) = -J_p\zeta$$

These fibrations are also G_2 -equivariant. For this double fibration, the similar result to Nakata' one holds:

Theorem 4.2 In the double fibration (4.2), for each $p \in S^6$, $\pi(\chi^{-1}(p))$ is a five-dimensional totally geodesic submanifold of $\widetilde{\operatorname{Gr}}_{ass}(\operatorname{Im}\mathbb{O})$ which is isomorphic to SU(3)/SO(3) and for each $\xi \in \widetilde{\operatorname{Gr}}_{ass}(\operatorname{Im}\mathbb{O})$, $\chi(\pi^{-1}(\xi))$ is a three-dimensional sphere S^3 which is totally geodesic and special Lagrangian in S^6 .

Remark. S.Klein gives the classification of the totally geodesic submanifolds of $\widetilde{\mathrm{Gr}}_{ass}(\mathrm{Im}\mathbb{O})$ in [6]. In the following table, we list the maximal totally geodesic submanifolds of $\widetilde{\mathrm{Gr}}_{ass}(\mathrm{Im}\mathbb{O})$.

maximal tot. geod.	dim.
SU(3)/SO(3)	5
$\mathbb{C}P^2$	4
$S_{r=1}^2 \times S_{r=\frac{1}{\sqrt{3}}}^2 / \mathbb{Z}_2$	4
$S_{r=\frac{2\sqrt{21}}{3}}^2$	2

Theorems 4.1 and 4.2 give the geometric realization of totally geodesic submanifolds $\mathbb{C}P^2$ and SU(3)/SO(3).

It is important and useful for the submanifolds geometry of Riemannian symmetric spaces to characterize the tangent spaces of totally geodesic submanifolds, so called, curvature-invariant subspaces, or Lie triple systems. For our cases, we have the following: For $p \in S^6$, we put

$$\mathfrak{S}_p = \pi_-(\bar{\omega}^{-1}(p)) = \mathbb{C}P^2, \quad \mathcal{L}_p = \pi(\chi^{-1}(p)) = SU(3)/SO(3).$$

Then for $\xi \in \mathfrak{S}_p$ and $\xi \in \mathcal{L}_p$, we have the following:

$$T_{\xi}\mathfrak{S}_{p} = \{ \gamma \in T_{\xi}\widetilde{\mathrm{Gr}}_{ass}(\mathrm{Im}\mathbb{O}) \mid \gamma(p) = 0 \},$$

$$T_{\xi}\mathcal{L}_{p} = \{ \gamma \in T_{\xi}\widetilde{\mathrm{Gr}}_{ass}(\mathrm{Im}\mathbb{O}) \mid \langle \gamma(v), p \rangle = 0 \text{ for any } v \in \xi \},$$

under the identification of $T_{\xi}\widetilde{\mathrm{Gr}}_{ass}(\mathrm{Im}\mathbb{O})$ with $\mathrm{Hom}_{ass}(\xi,\xi^{\perp})$. Here we note that in the case of $\mathbb{C}P^2$, $p \in \xi$ and in the case of SU(3)/SO(3), $p \in \xi^{\perp}$. They give the geometric description of the Lie triple systems. Here we note that $\mathfrak{S}_p = \mathfrak{S}_{-p}$, $\mathcal{L}_p = \mathcal{L}_{-p}$.

For $\xi \in \widetilde{\mathrm{Gr}}_{ass}(\mathrm{Im}\mathbb{O})$ and a one-dimensional subspace l of ξ^{\perp} , we put

$$\mathfrak{m}_l = \{ \ \gamma \in T_\xi \widetilde{\mathrm{Gr}}_{ass}(\mathrm{Im}\mathbb{O}) \mid \langle \gamma(v), l \rangle = 0 \text{ for any } v \in \xi \ \}.$$

Then \mathfrak{m}_l is a Lie triple system and coincides with the tangent space of \mathcal{L}_p at ξ , where $p \in l \cap S^6$. A five-dimensional subspace \mathfrak{m} of $T_{\xi}\widetilde{\mathrm{Gr}}_{ass}(\mathrm{Im}\mathbb{O})$ is called a SL-type subspace if there exists a one-dimensional subspace l of ξ^{\perp} such that $\mathfrak{m} = \mathfrak{m}_l$. For later use, we prepare the following Lemma:

Lemma 4.3 Let \mathfrak{p} be a three-dimensional subspace of $T_{\xi}\widetilde{\mathrm{Gr}}_{ass}(\mathrm{Im}\mathbb{O})$. If there exists a SL-type subspace \mathfrak{m} such that $\mathfrak{p} \subset \mathfrak{m}$, it is unique.

§5 The Gauss maps of submanifolds of S^6 to $\widetilde{\mathrm{Gr}}_{ass}(\mathrm{Im}\mathbb{O})$

We show remarkable relations between Lagrangian submanifolds of S^6 and the geometry of the associative Grassmann manifold.

Let $f: M \to S^6$ be a Lagrangian immersion of a three-dimensional manifold M into S^6 . Then by Theorem 3.3, f is special Lagrangian. By Lemma 3.5, $-J_{f(p)}df(T_pM)$ is associative. We obtain a kind of Gauss map $\nu: M \to \widetilde{\mathrm{Gr}}_{ass}(\mathrm{Im}\mathbb{O})$ defined by $\nu(p) = -J_{f(p)}df(T_pM)$. **Theorem 5.1** If $f: M \to S^6$ is a Lagrangian immersion, then the Gauss map $\nu: M \to \widetilde{\mathrm{Gr}}_{ass}(\mathrm{Im}\mathbb{O})$ associated to f is harmonic.

It is a similar result as a famous formula by E. A. Ruh and J. Vilms ([10]).

Next we consider a reconstruction of Lagrangian immersions from maps to the associative Grassmann manifold. First we define a new class of maps to $\widetilde{\mathrm{Gr}}_{ass}(\mathrm{Im}\mathbb{O})$. Let $\bar{\nu}\colon M\to \widetilde{\mathrm{Gr}}_{ass}(\mathrm{Im}\mathbb{O})$ be a smooth map of a three-dimensional manifold M to $\widetilde{\mathrm{Gr}}_{ass}(\mathrm{Im}\mathbb{O})$. We call $\bar{\nu}$ an inclusive map of SL-type if there exists a SL-type subspace \mathfrak{m} of $T_{\bar{\nu}(p)}\widetilde{\mathrm{Gr}}_{ass}(\mathrm{Im}\mathbb{O})$ at each point $p\in M$ such that $d\bar{\nu}(T_pM)\subset \mathfrak{m}$. Then we have the fact that the Gauss map ν associated to a Lagrangian immersion $f\colon M\to S^6$ is an inclusive map of SL-type. Conversely, let $\nu\colon M\to \widetilde{\mathrm{Gr}}_{ass}(\mathrm{Im}\mathbb{O})$ be an inclusive immersion of SL-type of a three-dimensional manifold M. Then taking non-trivial double covering $\eta\colon M'\to M$, if necessary, we obtain a map $f\colon M'\to S^6$ which satisfies $f(p)\in (\nu\circ\eta(p))^\perp$ and $d(\nu\circ\eta)(T_pM')\subset \mathfrak{m}_{\mathbb{R}f(p)}$ at each $p\in M'$ due to Lemma 4.3.

Proposition 5.2 If f is an immersion, then f is Lagrangian and $\nu \circ \eta$ is the Gauss map associated to f and hence harmonic with respect to the induced Riemannian metric by f.

§6 Examples · · · Homogeneous Lagrangian submanifolds

Mashimo ([8]) classified compact Lagrangian submanifolds of S^6 which are obtained as orbits of closed subgroups of G_2 . That is, it is a totally geodesic spehere or it is congruent to one of four kinds of Lagrangian submanifolds M_i (i = 1, 2, 3, 4). They are orbits of three-dimensional Lie subgroups SU(2) or SO(3). The following is easy to prove:

Proposition 6.1 The Gauss map associated to a totally geodesic and Lagrangian submanifold is constant.

The Gauss maps $\nu_i \colon M_i \to \widetilde{\operatorname{Gr}}_{ass}(\operatorname{Im}\mathbb{O})$ associated to M_i $(i=1,\ldots,4)$ are equivariant under the corresponding Lie groups. In this note, we explain M_3 and M_4 only. The following description of the action by SO(3) is due to J. D. Lotay ([7]): We identify $\operatorname{Im}\mathbb{O}$ with the space $\mathcal{H}^3(\mathbb{R}^3)$ of homogeneous harmonic cubics on \mathbb{R}^3 by the following correspondence:

$$\begin{array}{ll} e_1 \mapsto \frac{\sqrt{10}}{10} x (2x^2 - 3y^2 - 3z^2); \\ e_2 \mapsto -\sqrt{6} xyz; & e_3 \mapsto \frac{\sqrt{6}}{2} x (y^2 - z^2); \\ e_4 \mapsto -\frac{\sqrt{15}}{10} y (4x^2 - y^2 - z^2); & e_5 \mapsto -\frac{\sqrt{15}}{10} z (4x^2 - y^2 - z^2); \\ e_6 \mapsto \frac{1}{2} y (y^2 - 3z^2); & e_7 \mapsto -\frac{1}{2} z (z^2 - 3y^2). \end{array}$$

Then the standard SO(3) action on \mathbb{R}^3 induces an action on $\mathcal{H}^3(\mathbb{R}^3)$. Then by this action SO(3) is a subgroup of G_2 . Let M_3 and M_4 be the orbits through e_2 and e_6 of this SO(3)-action, respectively. Then $M_3 = SO(3)/A_4$ and $M_4 = SO(3)/S_3$ are Lagrangian submanifolds of S^6 . In particular, M_3 is of constant curvature $\frac{1}{16}$.

We compute the differentials $d\nu_i : T_x M_i \to T_{\nu_i(x)} \widetilde{\operatorname{Gr}}_{ass}(\operatorname{Im}\mathbb{O})$ of the Gauss maps at $x \in M_i$ (i = 3, 4), respectively, and determine the ranks of $d\nu_i$.

Proposition 6.2 The rank of $d\nu_3$ is equal to 3 and the rank of $d\nu_4$ is equal to 2.

Especially in the case of M_3 , the following holds:

Proposition 6.3 The Gauss map $\nu_3 : M_3 \to \widetilde{\mathrm{Gr}}_{ass}(\mathrm{Im}\mathbb{O})$ is a minimal immersion with respect to $\frac{15}{8}\langle , \rangle$, where \langle , \rangle is the metric on M_3 .

References

- [1] R. L. Bryant, Submanifolds and special structures on the octonions, J. Differential Geometry 17 (1982), 185-232.
- [2] N. Ejiri, Totally real submanifolds in a 6-sphere, Proc. Amer. Math. Soc. 83 (1981), 759-763.
- [3] K. Enoyoshi and K. Tsukada, Lagrangian submanifolds of S^6 and the associative Grassmann manifold, to appear in Kodai Math. J.
- [4] A. Gray, Almost complex submanifolds of the six sphere, Proc. Amer. Math. Soc. 20 (1969), 277-279.
- [5] F.R. Harvey and H.B. Lawson, Calibrated geometries, Acta Math. 148 (1982), 47-157.
- [6] S. Klein, Totally geodesic submanifolds of the exceptional Riemannian symmetric spaces of rank 2, Osaka J. Math. 47 (2010), 1077-1157.
- [7] J. D. Lotay, Ruled Lagrangian submanifolds of the 6-sphere, Trans. Amer. Math. Soc. **363** (2011), 2305-2339.
- [8] K. Mashimo, Homogeneous totally real submanifolds of S^6 , Tsukuba J. Math. 9 (1985), 185-202.
- [9] F. Nakata, The Penrose type twistor correspondence for the exceptional simple Lie group G_2 , to appear in RIMS Kokyuroku.
- [10] E. A. Ruh and J. Vilms, The tension field of the Gauss map, Trans. Amer. Math. Soc. 149 (1970), 569-573.
- [11] J. A. Wolf, Complex homogeneous contact manifolds and quaternionic symmetric spaces, J. of Math. and Mech. 14 (1965), 1033-1047.