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Abstract

This thesis studies theoretically the effect of quantum fluctuations on a hexagonal
antiferromagnet in magnetic field, with application to the material CsCuCl; and the
unexpected behaviors found experimentally in the magnetization process of CsCuCl;.
The purpose of the thesis is to show that quantum fluctuations play an important role
in determining the ground-state spin structures of CsCuCl;. The effect of quantum
fluctuations is investigated by applying various approaches.

First, a theoretical interpretation of the small jump in the magnetization of
CsCuCls, observed for a magnetic field applied parallel to the c-axis, is presented.
Quantum fluctuations are taken into account by using spin-wave theory. We pro-
pose that a new spin structure is stabilized by quantum fluctuations in the high-field
region. The observed magnetization jump is successfully explained as a spin-flop
phase transition caused by quantum effects. Our proposal is supported by several
experimental results.

Second, the ground-state magnetic structure near the saturation field is investi-
gated by using the exact hard-core-boson representation of S = 1/2 spins. The spin-
ordering problem near saturation is transformed to an equivalent two-component
Bose condensation problem in the low-density limit; then the low-density expansion
is applied to determine the ground state. From this study, we explicitly show that
the ground-state spin structure of CsCuCl; near the saturation field is different from
the one predicted by the classical theory. This conclusion agrees with that of the
1/S expansion.

Finally, we investigate the magnetic structure of CsCuCl; in a transverse mag-
netic field. First the classical theory is applied to determine the ground state spin
structure. At zero field, CsCuCl; is known to form a helical spin structure along the
c-axis. A transverse field deforms the helical structure and causes a continuous phase
transition from the helical (i.e. incommensurate) spin structure to a commensurate
state. The classical incommensurate state has several unusual features originating

from the classical nontrivial degeneracy; these features should be removed by quan-



iv

tum fluctuations. Therefore the effect of quantum fluctuations is taken into account
in a phenomenological manner. We see a large modification in the incommensurate

spin structure, which can be attributed to quantum fluctuations.
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Chapter 1

Introduction

The effects of quantum fluctuations on antiferromagnetic spin systems have attracted
attention recently. Attention has been paid especially to low-dimensional quantum
spin systems where quantum fluctuations are strong enough either to destroy the
magnetic ordering or give rise to new phases in the ground state. As a well-known ex-
ample, one-dimensional Heisenberg antiferromagnets have no long-range order even
at zero temperature, because of the strong quantum fluctuations. Thus many re-
searchers are investigating low-dimensional quantum spin systems to find new phases
or ground-state phase transitions.

There is, however, a different class of systems which are of importance and in-
terest from the viewpoint of quantum fluctuations. For most magnetic substances
the classical (mean-field) theory is a reliable method to determine the ground-state
spin structure in the magnetically ordered phase. That is, once magnetic ordering
is achieved and a macroscopic magnetic moment appears, the magnetic properties
of the system are well understood in terms of the “classical spin” picture. In the
classical (mean-field) theory, the spin Hamiltonian is regarded as an energy func-
tion of the magnetic moments (or classical spin vectors). The ground-state magnetic
structure is determined so as to minimize the classical energy. This approach has
succeeded in explaining many experimental results on ionic magnetic materials. It
has been therefore believed that quantum fluctuations do not change the nature of
the ground state in an essential manner, although they correct the physical quan-
tities to some extent. There are, however, some exceptions to this rule. Namely,
in some frustrated spin systems the classical theory predicts infinitely degenerate
ground states; the degeneracy is unrelated to the symmetry of the original Hamil-

tonian (i.e. the degeneracy is nontrivial). In such cases, fluctuations (omitted from
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the mean-field approximation) are crucial in determining the most stable state. So
far several theoretical models have been suggested to fall into this category [1-9];
the two-dimensional triangular antiferromagnet in a magnetic field [1-3], the fcc
antiferromagnet [4], a frustrated square antiferromagnet [5,6], and a triangular anti-
ferromagnet with easy-axis anisotropy [7-9] are examples. In all cases, the classical
ground state has a nontrivial continuous degeneracy; that is, the ground state cannot
be determined uniquely. Quantum and/or thermal fluctuations remove the degen-
eracy and select the most stable state. The empirical finding is that quantum and
thermal fluctuations select the same spin structure as the stable state. These effects
are due to fluctuations, and thus are sometimes called “order from disorder” phe-
nomena. These phenomena have been mostly only of theoretical interest because in
most systems the mean-field theory determines the unique ground state. The pur-
pose of this thesis is to study such problems theoretically in connection with a real
material. We argue that the hexagonal antiferromagnet CsCuCl; is a good example

to see the physics of quantum fluctuations and the nontrivial degeneracy.

CsCuCl; is one of the hexagonal ABX;-type antiferromagnets whose magnetic
properties have been investigated extensively. In 1978 Motokawa discovered an
anomaly in the magnetization curve of CsCuCls [10,11]; the magnetization has a
small jump for a magnetic field applied parallel to the c-axis. The classical theory
is not a reasonable model for this problem, for it cannot explain the anomaly in the
magnetization. Therefore the observed phase transition at H. has been a mystery

for a long time.

Stimulated by Motokawa’s discovery of the magnetization anomaly in CsCuCl;,
we study theoretically the effects of quantum fluctuations on hexagonal antiferro-
magnets in magnetic fields. Having CsCuCl; in mind, we study several realistic
situations and see how quantum fluctuations change the ground-state spin structure
from the classical state. From this study we show that the unexpected behavior of
the magnetization of CsCuCl; can be understood as a manifestation of the effect of

quantum fluctuations on the triangular antiferromagnet in magnetic fields.

In the following sections, we review theoretical and experimental backgrounds for

the present study.



1.1 Triangular Antiferromagnet in an External
Magnetic Field

There has been considerable interests in the phase transition and low-temperature
properties of the triangular antiferromagnet, since it is a typical model with the
frustration. Many interesting properties in the ordering process have been found
already, which can be attributed to the frustration. In the quantum model, the
possibility of a disordered ground state in the S = 1/2 system, due to strong zero-
point quantum fluctuations, has been an important topic of theoretical study. Apart
from these interests, the triangular antiferromagnet shows unique features when an
external magnetic field is applied to the system. This section reviews the theoretical

developments on the triangular antiferromagnet in an external field.

1.1.1 Classical Theory

The triangular antiferromagnet in an external field is described by the following
Hamiltonian:

H=2J) 5;-5;—> H-S, (1.1)

(i) '

where J > 0 is the antiferromagnetic exchange interaction between nearest-neighbor
spin pairs; the summation (ij) is taken over for all nearest pairs. In the classical
theory, the spin S is regarded as a classical vector with | S;| = S and the Hamiltonian
H is regarded as an energy function of the S;. In the classical ground state, spins
are divided into 3 sublattices. The ground-state energy can be written in terms of

the sublattice moments S, S5, and S; as

E 1
ﬁ=2.](5152+52‘S3+S3S])—§H(51+S2+53), (1.2)

where N denotes the number of spins. For H = 0, the ground state has the well-
known 120° structure. It has a trivial continuous degeneracy related to the spherical
symmetry of the system and a two-fold discrete degeneracy associated with the choice
of sublattices. The external field reduces the symmetry of the Hamiltonian from the
spherical symmetry to the rotational symmetry around the magnetic field. However,
the ground state of the Hamiltonian (1.1) still has a continuous degeneracy as shown

below. The energy expression (1.2) is simplified by using the relation (§; + S, +
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Figure 1.1: Examples of the classical ground state of triangular antiferromagnet in
a magnetic field: (a) umbrella-type structure. (b) low-field coplanar structure. (c)
high-field coplanar structure. (d) coplanar structure which is the inverse of (b).

53)2=352+2(Sl-52+52-53+S3-51)as

E , H? H\? |
_]\7_—3JS _3—67+J(SI+S2+53—€.7) . (13)
The minimum of the energy expression (1.3) is clearly obtained by imposing the
condition
S+ Sy+ 8= 2 (1.4)
1 2 3= 57 .

To determine the directions of §,,5; and S; we need 2 x 3 = 6 parameters, but
Eq. (1.4) gives only three conditions. Therefore the spin configuration cannot be
determined uniquely by the condition (1.4), even if we ignore the degree of freedom
with respect to the rotation around the field direction. This type of degeneracy is
continuous and does not reflect the symmetry of the original Hamiltonian; thus it is
often called a nontrivial continuous degeneracy [2]. Figure 1.1 shows four represen-
tative examples of ground-state spin configurations. In addition to these four states,
there is an infinite number of spin configurations with the same ground-state energy.
Suppose the system has an easy-plane anisotropy, and that an external field is
applied in the plane: |
H=2J ) (STS7+SIS!+ASiS))—HY, SF, (1.5)
<ij> ; ,
where A < 1. For zero field, the spins form the 120° structure with the spins in the

zy-plane. For nonzero field, the Hamiltonian has no longer the continuous symmetry,
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but the ground state of this system is still continuously degenerate, as shown below.
It is reasonable to assume that the spins remain in the zy-plane for nonzero field.

In this case the spin directions are expressed in terms of the angles from the applied
field as

S; = S(cos ¢;,sin ¢;,0). (1.6)
The energy expression corresponding to Eq. (1.3) for this case is

% = —3J5%(1+4 3h%) + J5?[(cos ¢1 + cos ¢; + cos ¢3 — 3h)?

+(sin ¢; + sin ¢, + sin ¢3)?], (1.‘7)

where h = H/18JS. Thus the condition for the ground state can be expressed as

(1.8)

€os @1 + cos ¢3 + cos ¢3 = 3h,
sin ¢y + sin ¢y + sin ¢3 = 0.

Here we have three parameters ¢;, ¢, ¢3; however Eq. (1.8) gives only two conditions,
and therefore the ground state is nontrivially degenerate [1]. The umbrella-type spin
structure of Fig. 1.1(a) is not a ground state, but the other three structures in Fig. 1.1
still belong to the subset of ground states. We can express the angles ¢; and ¢, in
terms of ¢; by

1
cos ¢y = %(Sh —cos¢s) +tsing;, sing; = —Esin ¢35 + t(3h — cos ¢3),

cos ¢y = —;—(3h — cos ¢3) —tsings, sing; = —%sin $3 — t(3h — cos ¢3), (1.9)

2+ % = (9h% — 6hcos g3 + 1)1,
For h < 1/3, all values of ¢; are allowed, and ¢, and ¢, increase monotonically
with ¢3. For 1/3 < h < 1, values of the phases ¢; near 7 are forbidden; the precise

requirement is

2 _
cos ¢; > 3h2h 1.

(1.10)

The forbidden region grows with A until the fully aligned state is reached at A = 1.
Also for 1/3 < h < 1, ¢; and ¢, are not monotonic functions of ¢;.
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1.1.2 Thermal Fluctuations

Since the nontrivial degeneracy of the classical ground state does not reflect the
symmetry of the system, the degeneracy does not usually persist when we consider
perturbations such as thermal fluctuations at finite temperatures or zero-point quan-
tum fluctuations. Kawamura [1] investigated the effect of thermal fluctuations on the
antiferromagnetic plane-rotator model on the triangular lattice. He calculated the
free energy using the harmonic approximation. The calculation is performed by ex-
panding in the deviations (assumed small) of the spin directions from the equilibrium
values; the stable configurations (¢1, ¢, #3) are given by Eq. (1.9). At finite temper-
atures, the spins will deviate from the ground-state configurations due to thermal
fluctuations. The expansion of the Hamiltonian to second order in the deviations

z® = ¢ — ¢y is

n

H = Ey + Ha, (1.11)

where H; denotes terms quadratic in {z;,}. Since we are expanding about the
equilibrium configuration, the linear term disappears. Introducing the Fourier trans-

formation of z on each sublattice as

:z:g-') = % ng) exp(ik - r;), (1.12)

Hz = 72:!:3,‘,.4;6:%, (113)

where the summation runs over the reduced Brillouin zone; the column vector z is
defined by

2T = (21, 2, 2, (1.14)
The matrix Ay is defined by
1 Vg cosdiz Vi cos dia
Ag =6J | v}, cos gy 1 Vg cos das |, (1.15)
Vg cos ¢y Vj, cos by 1

where ¢;; = ¢; — ¢;, and the complex quantity vy is defined by
-k 3 —ky — 3k
Vg = % [exp(z'k_.,) + exp (z—k;—\/_k”) + exp (z—%)] . (1.16)
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Figure 1.2: Field dependence of equilibrium spin configurations in the low-
temperature limit.

Within this approximation, the free energy is found to be

2
F~FE+ ﬂln % + = Zln(detAk), (1.17)

where the Boltzmann constant is taken to be unity. The determinant of A is given

by

detAp = 1+ (v} + v},>) cos 13 COS a3 cOs $a; — |vp|?(cos® b1z + cos® Pas + cos? #31)-
(1.18)

Now the problem is to minimize (1.17) under the condition (1.8); solutions are the

following:
Ho<h<1/3
¢1 =7, ¢ = cos™' Lt Sh, $3 = —¢a. (1.19)
(Im1/3<h<1
- 3h 1 3R 41
¢y = cos™! , $2 = ¢3 = cos™ —hn (1.20)

These solutions represent the equilibrium spin configurations in the low-temperature
limit. Figure 1.2 shows the resulting spin configurations. The entropy term strongly
favors the collinear state, in which spins on two sublattices are parallel and spins
on the other sublattice are antiparallel to the external field. Thus one expects that,
at finite temperatures, the collinear state might be stabilized over a finite range of

magnetic fields due to thermal fluctuations.
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Figure 1.3: Temperature-magnetic field phase diagram of triangular antiferromag-
net [2].

The harmonic approximation can be applied also to the Heisenberg antiferro-
magnet. The detailed calculation is presented in chapter 2, and thus we present here
only the conclusion of the harmonic analysis. The entropy term favors the coplanar
configuration in which all spins lie in the same plane (which includes the field direc-
tion). The dependence of the free energy on the inplane arrangement is exactly the
same as in the plane-rotator model. Therefore the stable spin configuration in the

low-temperature limit is the same as in the plane-rotator model.

Kawamura and Miyashita performed a Monte Carlo simulation of the Heisenberg
antiferromagnet on the triangular lattice in a magnetic field [2]. They found that the
spin-reorientation process occurs in the same way as in the plane-rotator model. All
spins remain in the common plane (which includes the field direction), and reorientate
via the intermediate collinear structure as shown in Fig. 1.2. Figure 1.3 is a schematic
H-T phase diagram illustrated by Kawamura and Miyashita [2]. Note that the

collinear state persists for a finite range of the field at finite temperatures.
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1.1.3 Quantum Fluctuations

Quantum fluctuations are also expected to remove the continuous degeneracy in the
classical ground state. This type of problem is often studied by using the spin-
wave approach, based on the 1/S expansion. In the formulation of the spin-wave
theory, the spin operators are transformed to boson operators through the Holstein-

Primakoff transformation
8¢ =S —a'a, $*+iS" = (25 — a'a)'/?a, S¢ —iS" = al(25 — ala)2.  (1.21)

The local spin coordinate system (£, 7, () should be chosen so that the ¢ axis coin-
cides with the classical spin direction. The 1/ correction to the ground-state energy
is obtained as the zero-point fluctuation energy of the bosons. In all cases the prob-
lem is to find a canonical transformation which diagonalizes the quadratic part of
the Hamiltonian (expressed in terms of the boson operators). Using the spin-wave
theory, Chubukov and Golosov [3] investigated the magnetic structure of Heisen-
berg antiferromagnets on the triangular lattice in magnetic fields. The spin-wave
calculation is reproduced in chapter 2 and so we do not present here the detailed
calculations. They showed that the quantum lowering of the energy in the low-field
limit (of order H?) is lower for the coplanar configurations than for the umbrella-
type configuration. All of the coplanar configuration satisfying the condition (1.8)

are degenerate to order H2. The next higher-order term takes the following form:
AE[JS = Acos 3¢, h3. (1.22)

The coefficient A can be calculated by numerical integration; it appears to be posi-
tive [12]. This means that the most stable state at low field is the one with ¢, = «,
precisely the same as the one selected by thermal fluctuations. Thus they concluded
that quantum fluctuations select the same mode of reorientation as do thermal fluc-
tuations, as shown in Fig. 1.2. In fact we can confirm this conclusion by calculating
the zero-point energies for various spin configurations for arbitrary H and comparing
them. Moreover Chubukov and Golosov claimed that the collinear configuration is
stabilized over a finite range of magnetic fields by quantum fluctuations so that the
magnetization curve shows a plateau near one third of the saturation field. Figure 1.4
is the behavior of magnetization proposed by Chubukov and Golosov. The existence

of the plateau has been suggested also by other authors [13-15].
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Figure 1.4: Anticipated magnetization curve of the triangular antiferromagnet in a
magnetic field according to [3]. The plateau on the magnetization curve results from
the stabilization of the collinear phase due to zero-point motion in the finite region
of magnetic fields .

Let us consider the three-dimensional hexagonal antiferromagnet but with the
ferromagnetic interaction along the c-axis. At least for the ground state within the
classical theory, it is reasonable to assume that the spins are aligned uniformly within
each chain so that the situation is completely the same as for the two-dimensional
triangular antiferromagnet. Therefore the ground state has the nontrivial contin-
uous degeneracy, which is lifted by thermal or quantum fluctuations. Most of the
ABX; hexagonal antiferromagnets (such as CsNiCl;) have antiferromagnetic intra-
chain interactions. One of few exceptions, CsCuCls, is known to be a hexagonal

antiferromagnet with ferromagnetic intrachain interactions.

1.2 Experimental Background of CsCuCl;

1.2.1 Basic Features

The magnetic properties of hexagonal ABX;-type compounds have been widely in-
vestigated in the last two decades. In these compounds, magnetic B** ions form a
hexagonal lattice. The exchange interaction between the c-chains is antiferromag-
netic and generally weak because of the large separation between B2t jons in the

c-plane. Therefore these compounds are often regarded as quasi-one-dimensional
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Figure 1.5: Crystal structure of CsCuCl; [19].

magnets. The frustration of the triangular network in the c-plane produces rich

magnetic properties in many ABXj-type magnetic compounds.

Cesium cupper chloride (CsCuCl;) is 2 member of ABX3-type compounds; the
magnetic Cu®* ion has S = 1/2. Unlike many other ABX; compounds such as
CsNiCls, the exchange interaction along the c-axis is ferromagnetic. At high temper-
atures, the lattice structure of CsCuCl; is the same as other ABX;3-type compounds
such as CsNiClz. But it undergoes a structural phase transition at 423K leading to
a helical atomic displacement along the c-axis. This is atiributed to the cooperative
Jahn-Teller effect of the Cu®* ions [16]. Figure 1.5 shows the crystal structure of
CsCuCl; at room temperature. In this structure, the six Cu?* ions contained in a
unit cell form a helix. The low symmetry of the local structure leads to an antisym-
metric Dzyaloshinsky-Moriya (DM) interaction between neighboring spins along the
c-chains.

The magnetic properties of CsCuCl; have been studied by several authors. Tazuke
et al. measured the paramagnetic susceptibility in order to determine the exchange

parameters [17). The positive Weiss temperature indicates that the dominant ex-
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Figure 1.6: Magnetic structure of CsCuCl; [19]. The spin moments lie in the c-plane
and the turning angle # is 5.1°. The dashed line shows the chemical unit cell.

change interaction is ferromagnetic. The exchange parameters, estimated by com-
paring the experimental curve with the theoretical one calculated by the high-
temperature expansion method, are Jo = 24K and J;/J, = 0.16. Hyodo et al.
estimated Jy and J; from optical measurements [18]; their results are J, = 32K
and Jy/Jo = 0.07. The ratio J;/J, is relatively large compared to other ABX;-type

compounds such as CsNiCls.

Three-dimensional antiferromagnetic ordering occurs at Ty = 10.5K in CsCuCls.
Adachi et al. investigated the spin structure of CsCuCl; in the ordered phase by
neutron scattering [19]. As shown in Fig. 1.6, the moments lie in the c-plane (with
the 120° structure) and form a helical spin structure with a long period along the
c-axis. The turning angle of the spins is about 5.1°; thus the period of the helix is
about 71 layers. The helical structure can be explained as a competition between

the ferromagnetic intrachain exchange interaction and the DM interaction.

1.2.2 Magnetization Process

In 1978 Motokawa [10] performed a magnetization measurement on CsCuCl; using
pulsed high magnetic fields. He discovered an anomaly in the magnetization process

for a field applied parallel to the c-axis. Figure 1.7(a) is a reproduced magnetization
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curve [11]. When the external field is applied parallel to the c-axis, the magnetization
increases almost linearly but then shows a small jump at H, = 12.5T. Above H,,
the magnetization increases again and saturates at H, = 31T. The magnitude of the
magnetization jump at H. is 0.013up; the saturated magnetization value is 1.1up.
The magnetization measurements were carried out at various temperatures between
1.1K and Ty. The temperature dependence of the transition field H, and the sat-
uration field H, are given as a phase diagram in Fig. 1.7(b). H,. and H, gradually
decrease with increasing temperature. The magnitude of the magnetization jump is
almost constant below 3K.

Fedoseeva et al. also carried out magnetization measurements near 7y in fields
up to 8T using a superconducting magnet [20]. As shown in Fig. 1.8, they too found
a small jump of magnetization for a magnetic field parallel to the c-axis. Their
results are consistent with the phase diagram of Ref. 11 in the vicinity of Ty (see
Fig. 1.7(b)).

If we apply the classical (mean-field) theory to reasonable models of CsCuCls,
we expect that spins should simply stand up from the c-plane so as to form the
umbrella-like spin structure shown in Fig. 1.1(a), when the field is applied along the
c-axis. The umbrella should close with increasing field, and smoothly shrinks into
a finally ferromagnetic state. Thus the classical theory based on the simple model
Hamiltonian cannot explain the observed magnetization jump, and the anomaly of
the magnetization process of CsCuCl; has been a mystery for a long time. We show

in this thesis that this anomaly can be understood in terms of quantum fluctuations.

When an external field is applied perpendicular to the c-axis, the magnetization
increases with increasing field but then shows a small plateau at around 12T, as
shown in Fig. 1.7(a). After the plateau, the magnetization increases again up to
the saturation field. The saturation field for the perpendicular configuration is a
little smaller than for the parallel field case. In the zero-field case, spins form the
helical structure; on the other hand, they are aligned ferromagnetically above the
saturation field. Therefore there must be transitions from the helical structure to
ferromagnetically aligned state; in the intermediate-field region, the spins realize
complicated structures. Even in mean-field (classical) theory the problem is far from

trivial. This problem is discussed in chapter 4.

Although CsCuCl; is not completely equivalent to the isotropic triangular anti-
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Figure 1.7: Magnetization experiments on CsCuCl; [11]. (a) Magnetization curve of
CsCuCls. (b) Temperature dependence of saturation field H,, transition field H. for
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14



8

10

127K

£, { arb. units)

n- b
7- 2
" G.cm®
L Lu! " 8.
100102 104TK c
41 |
2 1 l
]
A\ 2 2 |
| LA
3 K] 1 1 ! {1
104 106 1087TK 0 20 50 70K,xOe

Figure 1.8: The magnetic behavior of CsCuCl; in a field directed along the c-axis [20].
a: Temperature dependence of the magnetic moment of CsCuClj; for various fields. 1-
3.3kOe; 2-50kOe; 3—60kOe; 4-71.6kOe. b: The magnetic part of the heat capacity as
a function of the temperature. 1-At H = 60kOe: 2-H = 71.6kOe. c: Dependence of
the magnetic moment of CsCuCl; in an external field. 1-At T' = 8.7K; 2-T' = 4.2K.

H, kOe
80[ 18 p
601 2
40+
20}
L1 1 10
| 4 6 8 12TK

Figure 1.9: The H-T phase diagram of CsCuCls.

phase [20].

P represents the parania.gnetic

15



ferromagnet '(due to weak anisotropy), the situation is close to what we discussed in
section 1.1. We show in this thesis that CsCuCl; is a good example to explore the

physics of quantum fluctuations in the case of nontrivial degeneracy.

1.3 Outline of Thesis

This thesis studies theoretically the effect of quantum fluctuations in hexagonal an-
tiferromagnets in external fields in connection with real materials such as CsCuCls.

In chapter 2 we present a theoretical interpretation for the jump of the mag-
netization in CsCuCl; observed for H||c. It is shown that quantum fluctuations
are so important that they changes the ground-state spin structure. The observed
anomaly in the magnetization is well explained as a spin-flop phase transition caused
by quantum fluctuations.

In chapter 3 we study the ground-state spin structure in a strong field just below
saturation, using the exact hard-core-boson representation for S = 1/2 spins. The
magnetic ordering problem near saturation is mapped onto the Bose condensation
in a low-density Bose gas. We then apply the low-density expansion to the problem,
and determine the ground state spin structure near the saturation field.

In chapter 4 we study the magnetic structure of CsCuCl; in a transverse mag-
netic field. First we apply the classical theory and determine the ground-state spin
structure. We show that the transverse field deforms the helical spin structure and
causes a complicated incommensurate magnetic structure. Next we take into account
quantum fluctuations; we see that the classical incommensurate structure is largely
modified by quantum fluctuations.

Chapter 5 gives a summary and discussion.
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Chapter 2

Quantum Fluctuations and

Magnetic Phase Transition in
CsCuCl;j

This chapter presents a theoretical interpretation of the small magnetization jump in
CsCuCl; for a field applied parallel to the c-axis. The contents were already published
in Ref. 21 as “Quantum Fluctuations and Magnetic Structures of CsCuCl; in High

Magnetic Field”; modifications have been made for convenience and for simplicity.

2.1 Introduction

The spin structures in most magnetic substances are well determined by the classical
(mean-field) theory. It is generally believed therefore that quantum fluctuations do
not change the nature of the ground-state spin ordering in an essential manner.
However, there are some exceptions to this rule. It has been known theoretically
that frustrated spin systems often show nontrivial continuous degeneracy in their
classical ground state. Such a degeneracy is usually removed by thermal and/or
quantum fluctuations. Several authors have already recognized such a possibility
for some frustrated spin systems [1-9]. The purpose of this chapter is to show that
CsCuCl; in a magnetic field applied parallel to the c-axis is an example of a real
system in which the quantum fluctuations are crucial in determining the ground-
state spin structure. We show that the unexpected behavior of the magnetization in
CsCuCl; [10,11] is a manifestation of quantum fluctuations.

This chapter is organized as follows. In section 2.2 the classical theory is applied

to determine the classical ground-state spin structure. The effect of quantum fluctu-
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ations is then examined in section 2.3 by using the spin-wave theory. In section 2.4
we study the effect of thermal fluctuations in the low-temperature limit. Section 2.5
reviews the experimental determination of the magnetic structure in the high-field

region. Section 2.6 summarizes this chapter.

2.2 Classical Ground State

Let us write the model Hamiltonian of CsCuCl; in a magnetic field applied parallel

to the c-axis as

H=-2J0 [Sin- Sins+1+ 1S5Sk 41+ ShShs1)] + 25 Y Sin- Sin

in {is)n

—ZDnn+1 * (Sin X Sin+1) — gHB ZH : Sin; (21)

in in

where S;, represents a spin operator (S = 1/2) located at the i-th site in the n-th
c-plane. The summation (ij) is taken over all nearest-neighbor pairs in the c-plane.
The z-axis is taken parallel to the c-axis. The first and second terms are the in-
trachain ferromagnetic exchange interaction and the interchain antiferromagnetic
exchange interaction, respectively. n(> 0) is a weak anisotropic exchange interac-
tion of easy-plane type; the importance of this term for the interpretations of ESR
experiment [23] has been pointed out by Tanaka et al. [22]. The third term is the
DM interaction; the D,,,4; vector is assumed to be parallel to the c-axis. The fourth
term is the Zeeman energy. The dipole-dipole interaction is considered to be small
and is neglected for simplicity.

The DM term can be eliminated by using a new spin coordinate system in which
the zy-plane is rotated by an angle ¢ along the z-axis:

SE = SF cosng — S, sinng,

, (2.2)
SY = SZ sinng + SY, cos ng.

The Hamiltonian is then transformed to

H=- Z[Zfo(sﬁzsﬁm + 8% St 1) + 2J0S7, 55 41]

+2J; Z S, - Sjn - gyBHZan, (2.3)
<i>n in
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where

2

Jo = JOJ (1+n)%+ (%) y D =|Dippl (2.4)
The primes (‘) in Eq. (2.2) are omitted from the Hamiltonian (2.3), for simplicity.
The rotation angle g is determined so as to eliminate the asymmetric term: tangq =
D/2Jy(1 + n). According to the experimental results [22], J, is estimated to be
Jy = 1.012J,. Note that the antisymmetric interaction has been reduced to a weak

anisotropy of easy-plane type.
The classical ground state of the triangular antiferromagnet has the 3-sublattice
structure; we label the sublattices by ! = 1,2, 3. The ground-state energy is described

in terms of the sublattice moments §,,5,,5;:

E, - 2
-]VO' = —2JuS* + ‘:;‘AJI[(S;P + (S;)z + (S;)zl

1
+2J1(Sl . 52 + 52 . 53 + 53 . 51) - -é-gyBH(Sf + S; + S;), (25)

where N represents the total number of spins. The anisotropy parameter A is defined
by A = (J, - Jo)/J1 = 0.07. At zero field, the classical ground state is the 120°
structure with all spins lying in the c-plane. This spin structure is consistent with
the result of the neutron scattering experiment [19] shown in Fig. 1.6. To consider
the spin structures at finite fields, it is convenient to express S; in terms of the polar

coordinates:

S; = (S cos ¢ sin by, Ssin¢;sinb;, S cos ;). (2.6)

Then we shall consider the four types of spin configurations in Fig. 2.1; all are possible
candidates for the ground state.

[I] umbrella-type configuration

First we calculate the classical energy of the umbrella-type spin structure in
Fig. 2.1(a). Within the classical theory, this spin structure is expected to be the
ground-state spin structure. In this case we have §; = 8 and ¢; = 27(l — 1)7/3 + ¢;.

The classical energy E, is given by

% = —2J,5% — 3J,5% + (24 4 9)J15% cos® § — gupSH cos . (2.7)

The angle § between the moments and the magnetic field is determined by minimizing
the above expression, yielding

gusH

0089 = m

(2.8)
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Figure 2.1: Four types of spin configurations of the triangular antiferromagnet in
a magnetic field. (a) The umbrella-type configuration. The c-plane components of
the spins form the 120° structure. (b) The coplanar configuration for H < H,/3.
The spins lie in a plane including the c-axis. (c) The coplanar configuration for
H > H,/3. Two of the three spins are oriented along the same direction. (d) The
coplanar configuration, which is the inversion of the configuration (b).

The magnetization is given by M = gupS cos 8; it increases linearly with the external
field and saturates at
H, = (18 + 4A)J,S/gus. (2.9)

Substituting (2.8) into (2.7), we have the minimum energy of this configuration as

% = —(2.70 + 3.]1)52 - %QMBSHshZ, (2.10)

where h= H/H,.

[IT} coplanar configurations
To describe the coplanar configurations, we put ¢; = ¢, = ¢3 = 0 and take 6,
between —7 and m; in this treatment we assume that the spins lie in the zz plane.

In the following we consider the three types of coplanar configurations in Fig. 2.1.

(i) 6, = 7 and 6, = —03 = 6 (Fig. 2.1(b))
The classical energy for this configuration is

Eo

N = —2J,8% + %AJISQ(I +2cos?8)

+2J;5%(cos 26 — 2 cos §) — %g,uBSH(Z cosf — 1). (2.11)
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Minimizing (2.11) with respect to 8, we have

(gusH/S) + 6J
(12 +48)7;

cosf = (2.12)

The minimum energy for this configuration is obtained by substituting (2.12) into

(2.11). Since A is small in CsCuCl;, we expand the energy with respect to A as

% = —(2J, +3J,)S% — -;-guBSHshz + ALL(1+ B)2S? + O(A2). (2.13)

The third term of the above equation is the energy difference from the umbrella

configuration; it is always positive for A > 0.

(ii) 6, = —6, and 8; = 65 = 6, (Fig. 2.1(c))

The classical energy of this configuration is given by

%’— = —2J,8% + gAJl.S'z(cos2 8, + 2 cos? B)

+2J15%[1 + 2 cos(8, + 6,)] — %gyBSH(cos 8. + 2 cos By). (2.14)

From the conditions dEy /86, = 0 and Ey/d6y = 0, the following two equations are
obtained:

Asin 2, + 6sin(6, + 6,) — (9 + 2A)hsiné, = 0,
(2.15)

Asin 20, + 3 sin(Ga + 95) - (9 + 2A)h sinfy, = 0.
For A = 0, the solutions of these equations are given by Eq. (1.20) on replacing
(¢1, ¢2) by (—b.,8p). For A # 0, it is difficult to solve equation (2.15) for the general

case. However for small A, we can expand cos @, and cosf, in A:

3, 1 (1 — h2)(7 — 3h2) R
COSga—Eh—ﬁ-FA 36h2 +O(A ),
(2.16)
3,1 (1-h%)(2-3R?) )
Cosgb—zh-f-a—-A 36h2 +0(A )

Substituting (2.16) into (2.14), we obtain the energy of this configuration to first

order in A as

~ — h2)\2
]Evg = —(2Jo + 3.]1)52 - %ngS.Hshz + AJ152(1——£)—

T I o(A?). (2.17)

Since the anisotropy is of easy-plane type (A > 0), this spin structure has higher

energy than the umbrella-type structure.
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(lil) 91 =, 92 = —63 =46 (Fig. 2.1(d))

The classical energy for this configuration is

% = —2JpS% + %AJlsz(l + 2 cos? )
+2J15%(cos 26 + 2 cos §) — %g,uBSH(Z cosf + 1). (2.18)

The angle 6, determined by minimizing the energy, is found from

(gupH/S) — 6-71.

(12 +4A)J; (2.19)

cosf =

The minimum energy for this configuration is obtained by substituting (2.19) into
(2.18) as

% = —(2Jo+3J1)S? — %g,uBSH,hz +AL(1-h2ST+0(AY).  (2.20)

Although this energy is lower than that of the configuration (b) or (c), it is still
higher than the energy of the umbrella-type.

We have thus shown that the three coplanar configurations (b), (c) and (d) have
higher classical energy than the umbrella-type configuration (a). The higher energy
is due to the small easy-plane anisotropy A. Actually for A = 0, all configurations
shown above satisfy the relation

gusH
6J; '

Sl +52+S3= (221)

and they all belong to the class of continuously degenerate ground states [2]. The
small easy-plane anisotropy A removes the degeneracy and selects the umbrella-
type configuration as the ground state. Note that the energy difference between
coplanar and umbrella-type solutions, which is proportional to A for small A, is
very small. Therefore, as shown in the next section, the classical energy difference

can be overcome by quantum fluctuations.

2.3 Quantum Fluctuations

In this section we take into account the effect of quantum fluctuations by using the
spin-wave theory; this allows us to give the first correction to the classical ground-

state energy in the 1/S expansion. We evaluate the zero-point energy for the four
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spin configurations for A = 0, and see how quantum fluctuations lift the classical

degeneracy.

[I] umbrella-type configuration
We take a local spin coordinate system £, 7, ¢ in which the {-axis coincides with
the classical spin direction. The transformation in each sublattice is expressed in

terms of the polar coordinate of the classical direction:

57 = —S¢ sing; — ST, cos B cos ¢; + S¥, sin 8 cos ¢;,
S =S¢ cosp — ST, cosfsing; + S, sinfsin ¢;, (2.22)

Sz = S? sinf + S, cosb,
where the classical values § and ¢; are given above. After the transformation (2.22),

the spin Hamiltonian is written as

H = _2']0 E(ansfn+1 + S:’nS:"n+1 + Si(nSicn+1)

420, T [__sf St + (1= 5 co6) S1,87, - 21~ 3cos”0)SE, S5,

<ij>n
+%sin 6 cos 8(S7, S5, + S5,.ST) + sin(¢; — $;)(S5, S5, sin + S¢S, cos 9)]
—gugH D (ST, sinf + 5S¢, cos ). (2.23)

We then introduce the Holstein-Primakoff boson operators a;, defined by

V25 V25

(atn + am)! =1 ) (at!n - ain)‘ (2‘24)

SC =S — o Sf =
a,na ’ m 2

Substituting the boson operators into the Hamiltonian and neglecting terms higher
than second order in these operators (according to the spirit of the 1/S expansion),
we obtain a quadratic spin-wave Hamiltonian:

Hsw = Eo + S Y_[(4Jo + 6J1)al,ain + 2Jo(al, 41in + al,Gins1)]

n

3
+2J15 2 {—_ 1 - h )(amajn + amajn)
<t3>n
[ ~(1 — 3h%) +i ‘/_ bl (al,ajn + a;na;n)} : (2.25)

The Fourier transforms of the boson operators are defined by
1 .
= \/ v % ay, exp(ik - 7y); (2.26)
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the summation over the wavevector k is performed over the whole Brillouin zone.

The spin-wave Hamiltonian is then written in the following form:

st = Eo - (2.]0 + 3J1)SN

S
+3 Y [(Ax(akar +a_gal ) — Bp(aga_g + akal ;)
k

—Cr(akar — a_gal )], (2.27)
where
Ag = 4Jo(1 — cos k,) + 3J1[2 + (1 — 3A%) %), (2.28)
B, =9J;(1 — h?)y, Cp = 6V3J:1h), (2.29)
Y = 1 (cos k. + cos M + cos M) , (2.30)
3 2 2 .
Ak = % (sin ks — sin ks +2\/§k” —sin ks —2\/§ky) . (2.31)

The spin-wave Hamiltonian Hsw is diagonalized by the Bogoliubov transformation
ar, = upag + vpal , ol L = vpop +upal (2.32)

where

- __ Ak e = sen 1(_ A
uk—\l (mﬂ), k g(vk)\lz(m 1). (2.33)

Then we obtain

DO =

1
Hew = Eo — (2Jo +31)SN + 53w (a}cak + 5) : (2.34)
k

The spin-wave frequency wy, is given by
wg = \JAZ — B2 — Cy

= \/[4Jo(1 —cosk,;) + 6J1(1 — ) {4Jo(1 — cos k;) + 6 1[1 + (2 — 3h2)y]}
—6v/3J1hAg. (2.35)

Then the leading quantum correction to the ground-state energy is given in the
expected form:
S
AEsw = —(2Jy+3J;)SN + 3 > w. (2.36)
k
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In the reduced Brillouin zone scheme, A E5w can also be expressed as
S
AEsw = —(2Jo +311)SN + =3 ws (k) + wa(k) + ws(k)] (2.37)
k

The three spin-wave branches are defined by wi(k) = wg, wa(k) = wgyq, and
w3(k) = wg_q, where @ = (47/3,0,0). The “prime” symbol on the sum 3 indicates

that the summation is performed over the reduced Brillouin zone.

[IT] coplanar configurations

For the coplanar configurations, we use the following coordinate system:

SE = an cosd; + S5, sin6;,
SY =S], (2.38)

Sz, = —S%, sin6; + S§, cosé;.

With the new coordinate system, the Hamiltonian becomes
H = _2‘]0 Z(ansfni-l + S?nS?n+1 + S:'(nsfn+1)

+2J; Z [ansf'n cos(f; — 6;) + S;"nS;',, + 8¢ 8¢ cos(6; — 6;)

Fon nin
+(8(,55 — S5, Sf,) sin(8: — 6;)]
—gupH Y (—S¢, sin6; + S, cos 6;). (2.39)

Substituting (2.24) in (2.39), we obtain a quadratic spin-wave Hamiltonian:
Hsw =Ey+ S .Z[(4J° + 6J1)a!na.-,, - 2Jo(a!na,-,,+1 + a:-‘n_l_la,-n)]
+J,S Z {[cos(8; — 6;) + 1](afnaj,, + a;-na,-n)
<Lijo>n
+[cos(f; — 6;) — 1)(Ginajn + a}na:-’n)}. (2.40)

Fourier transformation for the boson operators is now defined on each sublattice
(labeled by I = 1,2,3) as

Ci = \/%z’;az(k) exp(ik - ;7). (2.41)

Then the spin-wave Hamiltonian in the momentum space representation is expressed

in the following matrix form:

S
Hsw = Bo— (200 +31)NS+ 23
k

) (5 ) ( ﬁk )] (2.42)
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where Ag is a three-component vector with Ag = (a;(k), as(k), as(k)), and Ej, and
Fj, are 3 x 3 matrices. The matrix elements of E and F' are defined by

( En = Ezg = E33 = 4J0(1 — COS kz) + 6J1,
Ey3 = E3 = 3Jy[cos(6, — 62) + 1]ug,

g (2.43)
Eg3 = Eg2 = 3J1[COS(62 - 93) + l]l/k,

| Es1 = By = 3J1[cos(6; — 61) + 1]ug,
[ Fiy = Fyy = Fy3 =0,
F12 = FZ*I = 3J1[COS(61 - 93) - l]l/k,

W (2.44)
F23 = F;z = 3J1[COS(92 - 93) - I]Vk,

L F31 = 1*3 = 3J1[COS(93 - 91) - I]Vk,
where the complex quantity v is defined by

v = %— Iexp(ilc,) + exp (i_kz-'-T\/gk”-) + exp (z#&ﬂ . (2.45)

Now the problem is to find the spin-wave Hamiltonian Hgw in diagonal form:
g ‘
HSW = EO - (2]0 + 3J1)NS + E Zz'wz(k)[a;'(k)a;(k) + aq(—k)a}(—k)], (246)
1 k

where a;(k) and o;(k) are connected through the generalized Bogoliubov transfor-

mation:

a(k) = );[uY"(k)au(k) +o ) (k)ah(~k)),

‘ ' (2.47)
af (—k) = S [ (k)b (—k) + o (k) an (k)]

ll
The coeflicients u and v are determined from the following Bogoliubov equation:

(E + F)(u® +v0) = wy(u® — v®),
(2.48)
(E —_ F)(u(l) —_ fv(’)) = wz(u(’) + 'U(l)),
where © and v are three-component vectors
uT = (ug,uz, u3), v7 = (v1, va, v3). (2.49)
The spin wave frequency w;(k) is given by the solution of
det[(E — F)(E+ F) —uw?] = 0. (2.50)

26



300 T T

umbrella-type -----
250 coplanar ——
200 7
X
3 150 7]
100 7

50

0
A I K M K H

Figure 2.2: Calculated spin-wave spectrum at A = 0.5 for the umbrella-type config-
uration (a) and the coplanar configuration (c).

The 1/S quantum correction to the classical ground state energy is then given in the

same form as Eq. (2.37).

Although it is difficult to write spin-wave frequencies wj(k) of the coplanar states
in an explicit form for arbitrary wavevector k and for arbitrary h, the frequencies
can be determined by solving (2.50) numerically. Figure 2.2 compares the spin-
wave frequencies for the umbrella-type configuration of Fig. 2.1(a) and the coplanar
configuration of Fig. 2.1(c). Here h is taken as 0.5; as evident from the figure,
the lowest branch for the coplanar configuration is always lower than that for the
umbrella-type configuration. This is the reason why quantum fluctuations stabilize

the coplanar configuration more.

Using these spin-wave frequencies, we have evaluated the quantum correction for
the four spin configurations in Fig. 2.1. We have used the following values for the
parameters: Jo = 28K, J; = 4.9K. These values are very close to what Tanaka et
al. [22] used to interpret ESR data [23], and they are consistent with other previous
experiments [17,18]. Figure 2.3 shows the results; quantum fluctuations appear to
favor the coplanar configurations (b) for 4 < 1/3, and (c) for 2 > 1/3. As we can see

in various theoretical models [3-6], quantum fluctuations stabilize most the collinear
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Figure 2.3: The 1/S correction to the ground-state energy for the four spin config-
urations in Fig. 2.1 as a function of the magnetic field. The intrachain coupling J,
and interchain coupling J; are chosen as J, = 28K and J; = 4.9K. A is assumed to
be 0. The broken line denotes the classical difference of the energy measured from
the umbrella-type configuration, which is calculated with A = 0.07.

spin configuration.

The broken line in Fig 2.3 shows the classical contribution from the anisotropy,
which is calculated by taking A = 0.07. Note that the quantum contribution favoring
the coplanar configuration is in contrast with the classical contribution of A. There-
fore, in the presence of the easy-plane anisotropy, there is a competition between the
quantum contribution and the classical energy difference. In such cases the most sta-
ble spin structure must be determined by taking into account the anisotropy together
with quantum fluctuations. The crudest approximation is to evaluate the total en-
ergy by simply adding the classical energy (linear in A) and the quantum correction
(proportional to 1/S). Since A is small in CsCuCl,, we take A = 0 in evaluating the
quantum contribution. Figure 2.4 shows the total ground-state energy, measured
from the classical energy for the umbrella-type configuration. For h < h, = 0.36, the
energy of the umbrella-like configuration is clearly lower than that of the coplanar-

type configurations. However, the coplanar configuration (c) has the lowest energy
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Figure 2.4: The total ground-state energy for the four spin configurations, which
is the sum of the A-linear classical energy and the 1/S quantum correction shown
in Fig. 2.1. Here E is measured from the classical energy for the umbrella—type
configuration.
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for A > h.. Thus we expect the spin structure to change at h. from the umbrella-
type one in Fig. 2.1(a) to the coplanar structure in Fig. 2.1(c). This value of A is in
reasonable agreement with the experimental result, . = 0.4 [10,11]. The magnitude
of the magnetization jump at H, is estimated in the classical approximation as
(1-h?)
36h3 ’
where My = gupS is the saturation magnetization. Substituting A. = 0.36 and
A = 0.07 into (2.51), we obtain AM = 0.041M,, which should be compared with
the experimental value AM = 0.012M, [10,11]. At present we do not know whether

this discrepancy is serious or not.

AM = MyA (2.51)

2.4 Thermal Fluctuations

At finite temperatures, thermal fluctuations also contribute to the breaking of the
continuous degeneracy for A = 0. This section discusses the effect of thermal fluc-
tuations on the three-dimensional hexagonal antiferromagnet in a magnetic field at
low temperatures. As noted in section 1.2, thermal fluctuations favor the coplanar
configuration in the two-dimensional triangular antiferromagnet. The same physics
can be expected to appear in three-dimensional systems such as CsCuCl;. As done in
evaluating the quantum contribution in section 2.2, we examine the effect of thermal
fluctuations for A = 0.

First we examine the effect of classical thermal fluctuations in the low-temperature
limit by using the harmonic approximation. In this analysis, it is convenient to ex-
press the spin direction in terms of the azimuthal angle ¢;, and the polar angle
fin. The ground-state configuration is determined by minimizing the energy func-
tion H({din,bin}). At finite temperatures, the spins deviate from their equilibrium
configurations {@,, 0in} 25 {Gin = Pin+ Tin, Oin = Oin +¥in}. In the low-temperature

limit, the Hamiltonian can be expanded in powers of {z,, ¥i»} to second order:
H = Ey+ H,, (2.52)

where H; denotes the terms quadratic in {zi,,%;,}. The linear term disappears
because we are expanding about the equilibrium configuration. Within this approx-

imation, the free energy is calculated as

F = —T1n [ T] dfiudsis sinfinexp (—g) ,
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=FEy—TIn / I1 dzindyin sin 6;, exp (—ET%) . (2.53)

Here the Boltzmann constant is taken to be unity. Since H; is quadratic in z;, and
Yin, it is possible to carry out the integration in (2.53). Let us now evaluate the free

energy (2.53) for the umbrella configuration and coplanar configurations.

[I] umbrella-type configuration

The quadratic term in the expansion of the Hamiltonian is
Hy = S? Z[(ZJO +3J1)(22, + 72.) — 2Jo(TinTins1 + FinTint1]

+J152 Z [(2 - 3h2)winmjn - gingjn + \/gh(xingjn - ginxjn)a (254)
<t3>n

where §;, = yin sinf. With the Fourier transformations

Tin = \/Izwk exP(ik : rin)s Jin = \/Izgk exp(ik ‘ "'in)) (255)
N k N k

of z3 and g, we find

S? - . - -
Ha= < Y [(Ag + Br)z_gzr + (Ax — Br)i_kix + Cr(J_kzx — o_idx)]), (2.56)
%

where Ay, Bp and Cp are defined by Eqs. (2.28) and (2.29). Substituting the
quadratic Hamiltonian (2.56) into (2.53), we obtain the free energy of the umbrella-

type configuration as
F=Ey—Th / I] dexdi exp(—liTl)
k

x T 52 Ap + B Cr
_Eo+NTln-1:+-2—§lndet-—2—( C Ag — By

2
= Ey +NTln%+TZlnwk. (2.57)
k

We have used the relation A}, — B} — C = wpw_g in the derivation of (2.57).

[IT] coplanar configurations
Next we apply the harmonic approximation to the coplanar configurations. The

quadratic Hamiltonian for this case is given by
H, = S? Z[(zJO + 3-]1)(5,2,, + y?n) - 2J0(££n£in+l + yinyin-l-l)]

+3115% 3 [Finkjn + cos(8; — 6;)ginYsn], (2.58)
<iyj>n
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where %,;, = z;, sin 6;,. We introduce the Fourier transformations of # and y defined

on each sublattice as

- / K Q" ) / 3 .
Tin = —Z mg) exp(Zk ) rin)i Yin = —Z'!/g) exP(Zk : rin)' (2'59)
N k N k
Using 2% and y we have the following Hamiltonian in matrix form:
S T = T
H =23 [814( Bk — Fr)x + Y p(Bx + Fr)y), (2.60)
k
where & and y are three-component vectors
57 = (5,5,50), o7 = (4,4, 4O (261)

The matrix elements of £ and F are defined by Egs. (2.43) and (2.44). The free
energy of the coplanar configurations in the harmonic approximation is then given
by

1r_Si

F=Eo+NTln oT

+ Tg-X:I[IH det(Eg — Fi) + Indet(Eg + Fi)]. (2.62)
k

Using the relation det(E — F)(E + F) = wfwiw?, we can express the free energy in

the same form as for the umbrella-type configuration:
2

F=E+NTh™ 4+ L5 Sinu ). (2.63)

2r  29'%
Actually the product of the squared eigenfrequencies can be obtained without solving
the equation (2.50). Since the matrix E — F is independent of the inplane spin
arrangement, the dependence of the free energy on the spin configuration stems from
det(£ + F). One can easily see that the matrix E + F coincides with Eq. (1.15)
for Jo = 0. Therefore the inplane-arrangement dependence of the free energy in
the Heisenberg model is the same as in the plane-rotator (or XY) model. Thus we

conclude that the most stable state among the many coplanar structure is that of
Fig. 2.1(b) for A < 1/3 and that of (c) for A > 1/3.

Figure 2.5 is a plot of the spin-configuration-dependent factor in the free energy
Lk, In wi(k) as a function of the reduced magnetic field 4. As evident from the figure,
the entropy term favors the coplanar configuration more than the umbrella-type
configuration. The free energy for the coplanar configuration has a sharp minimum at

h = 1/3. The difference in the free energy between the lowest coplanar configuration
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Figure 2.5: Plot of 1 ;In wi(k) for the four spin configurations as a function of the
magnetic field.

and the umbrella-type configuration is at most about 0.012T (at A = 1/3); at low
temperatures, it is much smaller than the difference in AEsw at the same field
(estimated as about 0.14K).

Next we consider thermal fluctuations together with quantum fluctuations. The

free energy is calculated from the following formula:

F=E0+AEsw+TZI:§ln{1—exp [—S”‘T(k)]} (2.64)

Figure 2.6 shows the resulting free energy for various temperatures. We see that the

coplanar structure (b) or (c) is stabilized most by thermal fluctuations.

We have explicitly shown that thermal fluctuations at finite temperatures favor
the same spin configurations as do the quantum fluctuations at T' = 0. The collinear
spin structure is particularly favored by thermal fluctuations. Therefore we expect
the critical field H. to decrease with increasing temperature; this is qualitatively

consistent with the experimental phase diagram [11].
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Figure 2.6: The free energy for the four spin configurations relative to the classical
ground-state emergy; (i) T/2J1S = 0, (i) T/2/,S = 1.0, (iii)) 7/2/1S = 1.5, (iv)

2.5 Neutron-Scattering Experiment

An experimental check of our proposal has been carried out by Professor Motokawa’s
group, which uses the neutron scattering with a combination of pulsed neutrons
and pulsed magnetic fields [24,25). They observed the intensities of the magnetic
reflections (1/3,1/3,6) and (1/3,1/3,0) at fields from zero up to 14T. Measurements
were done at 7K; at this temperature, the phase-transition field H. is 10T. Figure
2.7 shows the field dependence of the reflection intensities [24].

First we examine the result for the (1/3,1/3,6) reflection (Fig. 2.7(a)); the 3-
sublattice structure of the c-plane magnetic component contributes to this reflection.
Due to the helical modulation along the c-axis, the reflection point shifts to the c*-
axis in the reciprocal lattice by § = 0.085. In magnetic fields up to 14T, § remains
constant; this experimental result is consistent with that the antisymmetric exchange
interaction causes the helical modulation along the c-axis. As shown in Fig. 2.7(a),
the intensity decreases with increasing field, below the transition field H. This is

due to the decrease of the perpendicular component of the moments with increasing
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Figure 2.7: The magnetic-field dependences of the reflection intensities observed
in the neutron-scattering experiment [24]: (a) (1/3,1/3,0.085) reflection and (b)
(1/3,1/3,0) reflection. The solid lines are the calculation from the model.
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field. The reflection intensity shows an abrupt decrease at H., which means an
abrupt decrease of the perpendicular moment. The solid line in the figure is the
intensity calculated assuming the coplanar structure in Fig. 2.1(c). We find very
good agreement between experiment and the calculation.

Second we look at the result for the (1/3,1/3,0) reflection. The umbrella structure
has no contribution at this reflection because of the helical modulation along the c-
axis. However in the high-field coplanar structure which we propose, the c-component
of the magnetic moment has a 3-lattice period in the c-plane and so it contributes
to the (1/3,1/3,0) reflection. The solid line is a model calculation for the intensity;
it is in good agreement with the experimental result.

These results are consistent with the proposed phase transition. Schotte et al.
also performed a neutron-scattering experiment near Ty, and obtained results con-
sistent with our proposed coplanar spin structure [26]. Ohta et al. performed sub-
millimeter wave ESR measurement of CsCuCl; using pulsed magnetic fields up to
16T [27,28]. An abrupt change of the ESR mode was observed at the magnetic field
which corresponds to the field where the magnetization jump occurs. Chiba et al.
performed a **Cs NMR experiment on CsCuCl; [29,30]. They observed a disconti-
nuity in the spectrum at the transition field H.. The spectra above and below the

transition field are compatible with our proposed spin structures.

2.6 Summary

We have shown that the small jump in the magnetization of CsCuCl; for a magnetic
field applied parallel to the c-axis is likely to be due to a quantum-fluctuation-induced
phase transition. The abrupt change of the magnetization is explained as a spin-flop
transition from the umbrella-type configuration to the coplanar configuration; the
transition is caused by quantum fluctuations. In fields lower than H., the umbrella-
type structure is stabilized by the easy-plane anisotropy, while in fields higher than
H,, the coplanar configuration is stabilized by quantum fluctuations. There is then
a competition between the easy-plane anisotropy (which favors the umbrella-type
configuration) and quantum fluctuations (which favors the coplanar configuration).
In most materials, the anisotropy energy dominates the quantum effect. However,

the Cu®* ion in CsCuCl; has S = 1/2 and the anisotropy appears to be very weak;
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therefore quantum fluctuations can overcome the anisotropy in this material. At
finite temperatures, thermal fluctuations favor more the coplanar configuration. The
results of the neutron-scattering experiment up to 14T are consistent with the pro-
posed phase transition [24,25]. The phase transition at H. has also been observed
clearly by ESR [27,28] and NMR [29,30].

Let us comment on a different theoretical interpretation for the anomaly in the
magnetization. Fedoseeva et al. [20,31] suggested that the transition at H, is caused
by the dipole-dipole interaction which leads to an incommensurate magnetic struc-
ture with a long-wavelength modulation. However, as shown in Ref. 32, the dipole-
dipole interaction can cause an incommensurate state only near the Néel temper-
ature. It seems, therefore, that their theory cannot explain the transition at low
temperatures.

Although the present study has been supported by experiments, there is left an
important problem from the theoretical point of view. In the present study, we took
A = 0 in the calculation of the quantum contribution and used the classical energy
difference for the contribution of A. In other words, we retained terms only to lowest
order in both A and 1/S. This is because the spin-wave calculation together in the
presence of the easy-plane anisotropy can be applied only to the umbrella-type spin
structure (which is the classically stable structure for A > 0). A more improved
treatment, taking into account the quantum effect for A > 0, is presented in the

next chapter.

37



Chapter 3

Ground-State Spin Structure in
Strong Magnetic Field

This chapter investigates the ground-state spin structure in the high-field region
(near saturation) by using a mapping onto the low-density Bose gas. The contents
were published in Ref. 33 as “Hexagonal Antiferromagnets in Strong Magnetic Field:

Mapping onto Bose Condensation of Low-Density Bose Gas.”

3.1 Introduction

Spin-wave theory is usually a useful method to include quantum fluctuations in the
theory of ordered spin systems; explicitly, one finds the 1/S quantum correction to
physical quantities such as the ground-state energy and the sublattice magnetization.
However standard spin-wave theory has a difficulty in solving a problem such as
CsCuCl; in a magnetic field applied parallel to the c-axis. We have shown in the
previous chapter that the classical ground state of CsCuCl; in H||c is the umbrella-
type spin structure; this is because of the small easy-plane anisotropy (with coefficient
A). On the other hand, if A = 0, the coplanar structure is selected by quantum
fluctuations. In order to determine the ground-state spin structure in the quantum
theory for A > 0, we have to take into account these two opposing effects, quantum
fluctuations and the anisotropy, simultaneously. However spin-wave theory for A > 0
can be applied only to the umbrella-type structure. Other types of spin structure
are unstable classically, and thus cannot be treated by the standard procedure of the
1/S expansion. For this reason, we have taken A = 0 in the spin-wave calculation

in chapter 2.
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In this chapter we apply a complementary approach which can avoid the difficulty
mentioned above. This approach is based on the exact hard-core-boson representa-
tion of S = 1/2 spins. We focus our attention on the case of strong magnetic
field slightly below the saturation field. The spin-ordering problem near satura-
tion is mapped onto an equivalent Bose-condensation problem in the low-density
limit [36-38]. Then the low-density expansion for interacting bosons [39] is applied
to determine the ground-state spin structure. In contrast to the 1/S expansion, this

approach has the following advantages:

(1) We do not need to assume particular spin structures; instead we can directly find
the most stable state.

(2) The difference of the magnetic field from the saturation field provides a small
expansion parameter for the theory, so we can include the quantum effect in the

calculation completely.

From this study we determine the ground state spin structure near the saturation

field.

This chapter is arranged as follows. In section 3.2 we introduce the transformation
from the spin operators to the bosons and derive an equivalent Bose Hamiltonian. In
section 3.3 the low-density expansion is applied to determine the ground-state spin
structure. A calculation for CsCuCl; is performed by using reasonable values of the
parameters. In section 4, the present approach is extended to the case of arbitrary

spin S. Section 5 summarizes the results of this chapter.

3.2 Bose-Gas Representation for the Spin Hamil-
tonian

In this chapter we consider the following general form of the Hamiltonian which

describes a hexagonal antiferromagnet in a magnetic field:

H = =23 (ST 57 + SISY) + Jg5153]
{17)
+2 3 [JE(SEST + SYSY) + Il sz 82 (3.1)
(:5)

-H) S,

40



where S7, S? and S} represent the components of the spin operator (with S = 1/2)
at the site ¢. The summations (ij) in the first and second terms are taken over all
nearest neighbor pairs in the chain and in the c-plane, respectively. The interchain
interaction is assumed to be antiferromagnetic: Ji > 0, JI! > 0. We assume that J3
is positive, having the case of ferromagnetic chains such as CsCuCl; in mind. The
case of antiferromagnetic chains can be also treated within this model by rotating
the 2y component of the spins along the c-chain so that Jg- is positive. In this case
the S* part of the intrachain interaction is transformed as JJ,' - — é'.

We represent the spin operators (with S = 1/2) by Bose operators using the

following transformation:
1

Si=5- alai, St =(1-ala)a;, S7 = al(1-alay). (3.2)
The state with S? = 1/2 or Sf = —1/2 corresponds to n; = 0 or 1 at the site 1,
where n; is the particle number. It is easy to confirm that the transformation is
valid for S = 1/2 spins within the subspace where n; = 0 or 1. Substituting (3.2)
into the Hamiltonian (3.1), we obtain a Bose-gas Hamiltonian with nearest-neighbor
hopping and nearest-neighbor interaction. Since the matrix element of (1 — ala;)a;
is equal to the matrix element of a; within the subspace n; = 0,1, we can neglect
the factor 1 —ala; in the substitution within this subspace. In the momentum-space

representation, the boson Hamiltonian is written in a standard form:

1

H= E(ek - u)a}cak + N E an}c+qa;c'-qak'ak’ (3.3)
k kk'q
where N is number of lattice sites and
e = 2J3-(1 — cos k,) + 3JiL(1 + 2g), (3:4)
1 ks 3k z —
Y = = | cosk, + cos + V3, + cos ks — V/3k, , (3.5)
3 2 2
=H — =o(gL _ gl L [
p=H,—H, H =20Jt—=JN+3Jt+ 6 (3.6)
Vg=V +U=—-4llcosq, + 127y, + U. (3.7)

We have introduced the hard-core interaction U in order to satisfy the constraint
n; = 0 or 1 ; we must take the limit U — oo. A remarkable feature of this boson

system is that the minima of the single-particle energy ¢, are located at the two states
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k = £Q where @ = (47/3,0,0): e.q = 0. Since no reciprocal lattice vector of the
triangular lattice connects @ and — @, they should be considered as independent. If
i < 0, the ground state is the vacuum of Bose particles. This means that the spins
are completely aligned along the field direction when H > H.. Here we are interested
in the case of a small positive p ((H. — H)/H. < 1), which corresponds to the low-
density limit. In conventional (three-dimensional) Bose systems, it is well known that
the Bose condensation occurs at low temperatures; a macroscopic number of particles
occupy the lowest single-particle level. On the other hand, our model has two lowest
states k = +Q); thus we expect two-component Bose condensation to occur at low
temperatures. This is equivalent to spin ordering with the 3-sublattice structure.
The ground state has to be determined by minimizing the interaction energy of
the condensate particles. To discuss this type of problem, Beliaev [39] applied the
quantum-field-theoretical method to conventional systems in the low-density limit.
We extend his method to the two-component Bose condensation.

To treat the Bose condensation by the standard diagrammatical technique, we

introduce the following (complex) order parameters:

The existence of the order parameters (3.8) is equivalent to the long-range order of

the zy component of the spins. Then the following shift transformation
ag = ag+ VNyqg, a_qg— a_g+VNy_q, (3.9)
is substituted into (3.3). The resulting Hamiltonian is
H = Ey+ Hy + Ha + Hs + Ha, (3.10)

where

Bo = N[-u(lql+1_qI")+ s¥(ldql* +IW_ql)+ (Vo Vo) QP l-gP], (3.11)

Hy = VN{[—p + Voltgl* + (Vo + V)l¥_qlvgaq
+H—u+ Volv_ql? + (Vo + V)l¥gl ¥ ge-q (3.12)
+(¥g v_q + ¥ vQ)Voar + Hel,

42



Hy = Zk:{[% —p+ (Vo + Vi—@)l¥Ql* + (Vo + Vi @)l¥_gl*lakar
+(VQ + Vi_@) (¥ ¥-Qok.qak + ¥ Q¥Qakokiq)
+%(Vk+Q + V@) (V¥ gara_i + YQ¥-Qara_g)
+%Vk_Q(¢b2aka_k_Q +Q aka o)

1 . |
+‘2‘Vk+Q(¢_Q2%a-k+Q + ‘p-Qza;‘,at_k...Q)}, (3.13)

1 "
Hs = VN Y [Vk-q (¢Qa;c+k'—Qakak' + ¢Qa;ca;c'ak+k'—Q)

k.x'
+Vk+Q('¢:QGL+k:+Qakak' + ¢_Qa;ca;c,ak+k:+Q)], (314)
1 bt
Hi=ox Z Vil qOhs_ g0k k- (3.15)

kk'\.q
The quadratic term Y p(ex — u)a}cak is the free Hamiltonian of the theory; the
vacuum of the ay, is the noninteracting ground state. Let us define the T' = 0 Green

function as
G(k,w) = — /_ : dte“*(Tlag(t)al]), (3.16)

where
ax(t) = eMage™™M, (3.17)

and T means taking the time-ordered product. The noninteracting Green function
is given by
GO(k,w) = (w—eg + p+ in)~. (3.18)

Then we can apply the same diagrammatical technique as in conventional interacting

boson systems [39-41].

3.3 Low-Density Expansion

In this section we determine the ground state of the Hamiltonian (3.3) in the low
density limit and calculate the ground-state energy E = (). The amplitudes of the
Bose condensates |tg| and |¢_g| are expected to be small in the low-density limit.

Thus we expand the ground-state energy in terms of the order parameters:

E
v = ~Hl¥ql’ +1v-qf) + %Pl(l"/’QP +|9_ql*) + Taldgllv-ql’,  (3.19)
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Figure 3.1: Diagrams for I'; and I';. The solid line represents the unperturbed Green
function G((k,w) and the open square represents the bare interaction Vg

where I'; and I'; are given by the ladder diagrams shown in Fig. 3.1. We can interpret
I'; and T'; as effective potentials between two particles in the same state and in
different states, respectively. Since we are concerned with the small-u limit, we
take u = 0 in the zeroth-order Green function in the diagram. Integrating over the
intermediate frequency and setting the total frequency to zero, we obtain the integral

equation for the effective potential as

1 Va—q'
(ke K) = Vg m =3 — V3-8 pgrp ). (3.20)
TN §€k+4‘+5k'-q' ’

'y and T'; are related to I'(g; k, k') via

I'=T(0;@,Q), T2=T(0;Q,-Q)+I(Q;Q,-Q). (3.21)

The ground state is determined by minimizing the energy (3.19). We find the

following two types of ground state depending on the parameters T'; and I';:

(1) I'h < Ty
2
|¢Q|2 = Fil, 1/’—Q =0 (or vice versa), % = —“—1; (3-22)
(2) 1‘1 > Fz
2 _ 2_ __H E__ 4
|¢—Ql - |¢Q| - I11+ 1-12! N - l'\] +I\2 (3'23)
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Figure 3.2: Diagrams for (ap). The incoming broken lines represent the condensate
states ¥ and ¢_g. The outgoing broken lines represent ¢b and ¢:Q.

The condition that the energy be a minimum is equivalent to the self-consistency
equation (ag) = (a_qQ) = 0. However (ao) can have a nonzero value because the
state k = 0 is connected to =@ through ;. Figure 3.2 shows the diagrams for {(a,);

the analytical expression is

f/i% = —E—j(«ﬁzq% +4g¥2 ), (3.24)

where o =I'(Q; Q, Q) and &9 = 9J;".

The spin structure corresponding to case (1) is expressed by the following:

(5F) = H.—H cos(Q - r; + a),
Iy
(SY) = + H°P" H in(Q i+ a), (3.25)
1
N l _ H —H
(St) - 2 Pl ’

where o is an arbitrary phase. The quantity Q - ; takes the values 0, 27/3,47/3 on
the three sublattices of the triangular lattice. This is the umbrella-type spin structure

shown in Fig. 3.3(a); the 2y components of the spins form the 120° structure.

The spin structure corresponding to case (2) is

H —-H ¢ g
Y =2 o4+ D el
(S7) \f T, (Q T+ 2) cos o,

- H 0
(81) =23 7, cos (Q T+ %) sin 7, (3.26)

z __l__ Hc H e 2
(.S',-)-—2 4(I‘1+I‘2)COS2(Q r,+2),
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(a) (b) (c)

Figure 3.3: Three candidates for the ground state spin structure in the high field
region. (a) the umbrella type structure: The c-plane components of the spins form
the 120° structure. (b) a coplanar structure: One of the three spins is aligned along
the field direction. (c) a coplanar structure. Two of the three spins are aligned along
the same direction.

where ¢Yg = et Y_g = Ye'? ¢ = oy — ap, and § = oy + . In this case
the transverse magnetization component (S¥) and (S?) have an additional uniform

component coming from (a,):

i 2 H.—H\*?* 3¢ ¢
H —H\* 3¢ ¢ ‘

(s¥) = - 2 To ( < ) cos —sin —.

9Ji+ Ih+T1, 2 2

The uniform component is of order (H, — H)*/? and small. One can directly see from
the integral equation (3.20) that I'y vanishes for the isotropic exchange interaction.
There is thus no uniform component in isotropic systems, as expected physically.
The state expressed by (3.26) (and (3.27)) is a coplanar structure in which all spins
lie in the same plane (which includes the z-axis). The total phase 6 determines the
plane while the relative phase ¢ determines the inplane spin arrangement. As shown
in Eq. (3.19), the energy expression to fourth order in Yq and Y_q is degenerate
with respect to the relative phase ¢. This degeneracy is lifted by taking into account
higher-order terms (which depend on ¢):

28 = Iy(0y W2 + 4@ ) = 2ol cos 3¢, (3.28)

where I'; is expressed by the diagrams shown in Fig. 3.4. The phase ¢ is determined
according to the sign of T's:
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Figure 3.4: Diagrams for I';.

(i) T3>0 ¢ =7/3, m, 57/3 (see Fig. 3.3(b)),

(ii) I's < 0: ¢ =0, 27/3, 47/3 (see Fig. 3.3(c)).

The three-fold degeneracy is connected with interchanges among the 3 sublattices.
One can see from (3.28) that the spin structure in Fig. 3.3(b) has no transverse
component in the uniform magnetization, while the structure in 3.3(c) has a finite
transverse magnetization.

In chapter 2 we examined three candidates, shown in Fig. 3.3 , for the ground-
state spin structures in the high-field region, and compared their energies. We have
shown here that these are the only possible candidates for the ground state as far
as the high-field region slightly below the saturation field is concerned. The ground
state is selected from among the three structures depending on the three quantities
[, 5 and T';.

Let us now calculate I'; and I'; by solving the integral equation (3.20). In the

limit U — oo, the equation (3.20) can be reduced to the following form:

I
1 Vi,

T(g)=VI+(1)- = I'(q'
7 N q Ek,',q: + Ek'_q: ),
1y T _, (3.29)

The variables k and k' are omitted in the above expressions for simplicity. Let us

solve equation (3.29) for the two cases: (1) ky =k, = Q and (2) k; = —k; = Q.
() ki=k,=Q
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We use the following Ansatz for the solution of Eq. (3.29):
I(g) = (T') — 4JJ A; cos g, + 12J] 457,. (3.30)

Substitution of the expression (3.30) into Eq. (3.29) gives the following equation for

(F), Al, and Ag:
—4Jllry 12J1"7'2 (T) 1
—4Jlrm 41 12007 A |=]1], (3.31)

AN
S A S

—-4J[|)|*r4 12J1"7'5 +1 A; 1
where
1 1 1 cos q,
To= == ™=
°T N ; R '™ N ; €k+q T Ek'—g
1 Yq 1 cos? g,
nEg) Y BET) (3.32)
N Zq: €kiq T Ek'—gq N Eq: €k+q T Ex'_g
1 Yg COs q; 1 ’7421
Ty = = T = —
4 N¥€k+q+€k' q 5 N;Ek_‘.q'i'ek_q
Setting k = 0 in Eq. (3.30), we obtain
Fl = (F) - 4JOA1 + 12J1A2 (333)
(2) bi=—-k2=Q
We use the following Ansaiz:
(g — Q) +T(—q— Q) =2 ({T) — 470 4} cos g, + 127) A} ,) . (3.34)

Substituting (3.34) into (3.29), we obtain the equations for (I'), A}, and A}:

o —4Jln 12Ji"rz (T) 1
n —4Jln+1 127l A =] 1 |. (3.35)
. —4dln, 1270 +1/ \ 4 ~1/2

Setting ¢ = Q in Eq. (3.34), we obtain

T, =2(T) —8Jl A — 12) 4., (3.36)

Since the solutions of equations (3.31) and (3.35) cannot be written in simple

form, we show the numerical results for several cases in the following.

Figure 3.5 shows the calculated I'; and T'; for the XY model (JAl = J1” =0)asa
function of J3-/Ji*. In this case the solution of the integral equation (3.29) is simply
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Figure 3.5: T'; and T'; calculated for the XY model. Ji* is taken to be 1.

given by I'(q) = (T') = 1/7. We see that I'; is always smaller than I'; so that the
ground-state spin structure of the XY model near saturation is the umbrella-type

structure (Fig. 3.3(a)), as is expected from the classical spin theory.

Figure 3.6 shows the results for the isotropic case J& = Ji = Jp, Jr=Ja=.
The classical ground state is nontrivially degenerate for this case. We see that T is
always larger than I'; so that the ground-state spin structure is the coplanar structure
in Fig. 3.3(b) or (c). This result is consistent with the conclusion drawn from the
1/S expansion [3,21].

Figures 3.7 shows the results for the case of antiferromagnetic c-chains calculated
by taking Ji* = J = B, J¢ = - AI = Jo. We see that I'; < ', in almost all of
the region so that the ground-state spin structure is the umbrella type (Fig. 3.3(a));
this is in agreement with the classical theory. However, as shown in Fig. 3.7(b), T,
is larger than I'; for small Jy. In this region quantum fluctuations are strong enough

to stabilize the coplanar structure.

In all cases above, 'y and I'; vanish logarithmically in the limit Jo — 0. This

is in fact usual in two-dimensional systems, implying that the ground-state energy
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Figure 3.6: I'; and I'; calculated for the isotropic case: Ji- = Jél = Jo, Ji = J1” = J.
Jy is taken to be 1.

cannot be expressed as an analytic expansion in H. — H near the saturation field.

We calculated T'; and T'; using the following reasonable values for the parame-
ters for CsCuCly: J& = 28K, J# = JIl = 49K, while changing the ratio JJ/J&.
The above parameters are the same as used by Tanaka et al. [22] to interpret ESR
data [23]. Figure 3.8 shows the result: we find that I'; > T; if J!/ Ji is larger than
about 0.9. (I'; and I'; become negative for large JEI,I, suggesting that the non-collinear
spin structures are unstable for this parameter region; actually we can see even in
the classical spin theory that the non-collinear structures are unstable for enough
large JAI.) According to the experimental results [22], the anisotropy in CsCuCl; is
estimated as JA' /J5" = 0.99. Therefore the ground-state spin structure is the copla-
nar structure of Fig. 3.3(b) or (c). In order to determine which structure has the
lower energy, we have to calculate I's. However it is a very difficult task to eval-
uate I'; since infinitely many diagrams appear in the calculation; we have not yet
succeeded in solving this problem. But we have shown that the ground-state spin

structure of CsCuCl; for H||c, near saturation, is the coplanar structure. This result

is consistent with the result (in chapter 2) based on the 1/ expansion [21]. In zero
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Figure 3.7: T'; and T'; for the case of antiferromagnetic chain: J& = —Jl' = Jp, J& =

Jll = J;. J; is taken to be 1. Part (b) shows the behavior at small J,.
51



O | | 1 | | |
0O 02 04 06 08 1 1.2

To /T3

Figure 3.8: T; and T; calculated for the parameters chosen as Ji = 28K, Jit = JI =
4.9K. T; and T, are scaled by the interchain coupling Ji-.

field, the neutron-scattering data show that the spins lie in the c-plane, taking the
120° structure. The zero-field spin structure should be continuously connected to the
umbrella-type structure in Fig. 3.3(a), but not to the coplanar structure. Therefore
the spin structure must change at an intermediate magnetic field. Experimentally,
the phase transition of CsCuCl; in a magnetic field has been detected with various
methods [24-30]. Motokawa and his coworkers determined the magnetic structure
in the high-field region [24,25]. According to the experimental results, the high-field
magnetic structure agrees with that in Fig. 3.3(c). A recent experiment in the tem-
perature region close to the Néel temperature also supports their conclusion [26].
However we cannot say at this stage which spin structure [Fig. 3.3(b) or (c)] has the

lower energy within the framework of the present study.

3.4 The Case of Arbitrary Spin S

In this section we extend the method to the case of arbitrary spin S. The spin

operators with arbitrary S can be transformed to boson operators via Holstein-
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Primakoff, Dyson-Maleev, or other transformations. Using these transformations, we
can derive an equivalent lattice-boson Hamiltonian for arbitrary S in a form similar
to Eq. (3.3). Then we can calculate the ground state energy in the same manner
as in the previous section. The choice of the transformation from spin operators to
boson operators is only a matter of convenience; the final results should not depend
on the method of transformation, if terms to the same order are summed completely.

For the present calculation the Dyson-Maleev transformation

t
St = §—dla,, St = V25, S7 =25} (1 ( azg’) (337

is the most convenient. Substituting the transformation (3.37) into the spin Hamil-
tonian (3.1), we obtain the boson Hamiltonian

H= Z(Z.S’ek — u)akak ey [V - —(V,c + Vk')] O 4q® ;c, kK (3.38)
k k'.q

where

Vi = —4J3 cosk, + 12J; y, (3.39)

and the saturation field for arbitrary S is defined by
H, = [4(J¢ - ) + 67t + 12405, (3.40)

The same procedure developed in the previous sections can be used if we make the
replacements e — 2S¢y, and Vg — q" — (Vg + Vi) /2. Here we must be careful
about the fact that the interaction part of the Hamiltonian is not Hermitian. We
introduce the order parameters in the same way in Eq. (3.8) and express the energy
in the form Eq. (3.19). And then we have the three candidates in Fig. 3.3 for the
ground-state spin structure. The ground state is selected among the three structures
according to the three quantities I';, I'; and I's. The integral equation of the effective
potential for this case is given by

1 Vi,

_vl _
F(q) Vq + (P) 28N ; €k+q' +€k'_q'

I'(q),

V3 I'(q)
2SN q €k+q + Ek‘_

(V* + V5 + (1 - —) (). (3.41)
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One can find the solution of the equation (3.41) in the same form as Eq. (3.30) or
Eq. (3.34). The equations corresponding to Eqs.(3.31) and (3.35) are

L (=29)/Vg+n  —4ln 1270, (T) 1
25 7 -—4J"T3+25 12J0l7, A |=11], (342

T2 '—4.](')'7'4 12.]1"‘7'5 + 2S5 A2 1
L (A=28)/Vg+mo —4Jln 12707, (r) 1
25 n —4Jlr +25 12JJ'T4 A l=1( 1 |,
72 —4Jlr,  1200m+25) \ 4 —1/2

(3.43)
respectively. It is easy to confirm that Eqs.(3.42) and (3.43) coincide with Eqgs.(3.31)
and (3.35) for S = 1/2, respectively. The ground-state spin structure near saturation
for arbitrary spin S could be determined by solving the equations (3.42) and (3.43).
The results for arbitrary S are qualitatively the same as for S = 1/2.

Here we consider the large-S limit to see the connection between the classical and

the quantum theories. We expand I'y, I'; and I's in terms of 1/S as

_no, 1 (0 1@
I\l = Fl + EI‘l SzI‘ +---, (344)
1 1
T,=T5 + Ergl) T e S5+, (3.45)
1 1 1
Ts= §r51’+ S2F(2)+ 531‘(3) (3.46)

For the Hamiltonian (3.38), the expansion in 1/S is equivalent to the expansion in

the interaction. The leading term in the 1/S expansion is equivalent to the classical

(

spin theory. T' % and I‘(o) are given by the bare interaction, and 1“5” is given by the

lowest-order perturbation:

I =Vl = Vg = 493 — 3y + 603 + 12J], (3.47)
P =V —vg + vl - v =1 + Ay, (3.48)
) = %AJ ( 1?4{1) : (3.49)
where AJ = 4(J¢ — J) + 6(Jt — I, If AJ > 0, the classical ground state is

of the umbrella type of Fig. 3.3(a), while the ground state is the coplanar one in
Fig. 3.3(c) for AJ < 0. For AJ = 0, the ground state has the continuous degeneracy

characterized by the condition
[vQl® + [¥_ql* = n/18J7, (3.50)
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which is equivalent to (1.4). Quantum fluctuations should be important, if the
anisotropy is sufficiently small. Hence we consider the quantum corrections to I';, I';
and T'; for the isotropic case. The next-order corrections in 1/S are given by the
next-order calculations in the perturbation theory. Figure 3.9 shows the 1/S quan-
tum correction to I'; and I';. This calculation should be equivalent to expanding the
spin wave calculation in chapter 2 in terms of 1 — h to the leading order. We see that
1“51) > I‘gl) so that the 1/S correction favors the coplanar structure, as is expected.
Quantum corrections show a logarithmical divergence at small J, suggesting that
the convergence of the 1/S expansion is not good for small Jo. It seems that the
quantum corrections approach zero in the large Jy limit. Actually we can expand
solutions of equations (3.42) and (3.43) in terms of (J;/Jy)'/? for large J, as follows:

1/2 2,7
T, =187, {1 — 0.9654 (i) (ﬁ) +0.9090 (i) (—‘)

25 Jo 28 JO
1 1\3] 7J;\%?
_ 1Y o RAN A 3.51
+[01182(2S) 08766(23)](J0) +ooet, (3.51)
1y /Jp\Y? 1 2(.]1
= —1 2V (2 a83a7(—) (2
T, 18J1{1 12680(25) (Jo) +1.4834 (25) Jo)

+ [0.3802 (2—15-) _ 1.857 (-21?)3‘ (%) o } , (3.52)

where the coeflicients have been evaluated by numerical integrations. Note that
higher-order terms in J;/Jy contain higher-order terms in 1/S. The quantum cor-
rections to I'; and I'; vanish in the limit J;/J; — oco. This fact can be understood
in the following way: if the intrachain ferromagnetic interaction is very strong, each
chain behaves as one spin with large S. Thus in the large J; limit, the system can be
regarded effectively as a large-S system. We thus conclude that the 1/S expansion

is valid even for S = 1/2 if J; is not so small, at least for the isotropic system.

Figure 3.10 shows the quantum correction to I'; to order 1/S%. We see that
1‘5” < 0 and thus the ground-state spin structure for the large-S limit is Fig. 3.3(c), in
agreement with the result of the spin-wave calculation [21]. The next-order correction
term has opposite sign compared to the first-order correction, but is small compared
with the 1/S term for large Jo. Up to order 1/S?, the convergence of the 1/S
expansion for I's does not seem to be good for not so large J,. However, as in

the calculation of I'; and T';, we expect the result of the large-S expansion to be
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Figure 3.9: The quantum correction to I'; and T',.
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Figure 3.10: The quantum correction to I'. The solid line represents 1‘52) and the
broken line represents I‘gs).
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Chapter 4

Incommensurate State of CsCuClj
in Transverse Magnetic Field

4.1 Introduction

In the previous chapters we studied the effect of quantum fluctuations when the mag-
netic field is applied parallel to the c-axis. We showed explicitly that the quantum
fluctuations can make the ground-state spin structure different from the classically
stable state. The phase transition of CsCuCl; in a magnetic field applied parallel to
the c-axis was successfully explained as a quantum-fluctuation-induced phase transi-
tion, which leads to a new spin structure for H > H.. Results of neutron-scattering
experiments in the high-field region appear to be consistent with the proposed spin
structure. In view of these developments, it is important to study next the effect of
a transverse magnetic field on CsCuCl;. This case is more complicated, since the
magnetic field breaks the axial symmetry of the system. The purpose of this chapter
is to determine the spin structure of CsCuCl; in transverse field (perpendicular to

the c-axis), and also to see the effect of quantum fluctuations.

For the perpendicular field case, the observed magnetization curve shows a small
platean around 12T as shown in Fig. 1.7. According to theoretical studies of the
triangular antiferromagnet in an external magnetic field, thermal and/or quantum
fluctuations strongly favor the collinear configuration [2,3]. It has been predicted
theoretically that the magnetization curve shows a plateau (corresponding to the
collinear configuration) at one third of the saturation magnetization [3]. Thus one
may suspect that the observed plateau corresponds to the theoretically predicted one

for the triangular antiferromagnet. In the case of CsCuClz, however, the situation
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is much more complicated even at the classical (mean-field) level, due to the helical
spin structure caused by the DM interaction. We therefore first examine the ground
state at the classical (i.e. mean-field) level [42,43)].

Nagamiya et al. first investigated the effect of a transverse magnetic field on the
helical spin structure, for the case when this structure is caused by a competition
between symmetric exchange interactions [44]. When an external field is applied in
the plane of the spin rotation, a small magnetic field induces a uniform magnetic mo-
ment by polarizing the helical structure. At a certain field H. the system undergoes
a first-order transition into a so-called fan structure; this consists of alternative right-
and left-handed helices. If the field is increased further, the fan shrinks gradually. At
the saturation field H,, the system undergoes a smooth transition to a ferromagnetic

state.

On the other hand, if the helical spin structure is caused by the anti-symmetric
DM interaction, left-handed and right-handed helices are not degenerate so that the
fan state is not stable [45]. If the interchain interaction is ferromagnetic, there is
a smooth transition from helical structure to the completely aligned ferromagnetic
state. In CsCuCl;, the problem is much more complicated, because there are 3 sub-
lattices antiferromagnetically coupled with each other. The solution of this problem
is far from trivial, as shown later. The classical theory predicts a continuous phase
transition from the helical (i.e. incommensurate) state to the commensurate, incom-
pletely aligned state. The commensurate state has a nontrivial degeneracy, which
should be lifted by quantum (and thermal) fluctuations. The classical theory has
unusual features which are due to the existence of the nontrivial degeneracy in the
commensurate state. Therefore we take into account the effect of quantum fluctu-
ations to the incommensurate state in a phenomenological manner. We see a large

modification from the classical incommensurate state by quantum fluctuations.

This chapter is arranged as follows. In section 4.2 the classical theory is applied
to determine the ground-state spin structure. The effect of quantum fluctuations is

then examined in section 4.3, which is followed by a summary in section 4.4.
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4.2 Classical Theory of the Ground-State Spin
Structure

CsCuCl; in a transverse magnetic field is described by the following Hamiltonian:
H=-2J Z Sin'Sine1+20 (2): Sin'Sjn— 2 D(Sin % Sins1)— gp,BHE . (4.1)
ij)n
We neglect the anisotropic exchange interaction and the dipole-dipole interaction for
simplicity. According to the experimental data [15,16,20], the coupling constants
are given by Jy = 28K, J; = 4.9K and D = 5K. If the classical theory is applied to
Eq. (4.1), H is regarded as an energy function whose minimum has to be determined.
Without the interplane (Jo and D) terms, Eq. (4.1) describes a classical triangular
antiferromagnet in an in-plane magnetic field; the ground state of this system is
known to have three sublattices. We assume that this structure is maintained for
nonzero field, and also that the spins remain in the a-b plane. This is a reasonable
assumption for CsCuCls, since the DM term is most effective for spins lying in the
a-b plane and the anisotropic exchange term [omitted from (4.1)] is of easy-plane
type [22]. Then the structure in the n-th plane can be described by the angles ¢,
(7=1,2,3) between the spins and the field:

S in = S(cos @jn,sin ¢;y, 0). (4.2)

The structure in the ¢ direction is determined by the interplane terms. Since D is
small compared to Jy, the variation in the ¢ direction is slow. Therefore we treat
the interplane terms in the continuum approximation, to lowest order. Then the
average energy per spin & = M /LNy, ( L: length of the sample in the ¢ direction,

N, number of spins in each a-b plane ) is given by

g = —2J052

10>

g#BHS

+ 21,57 cos(d41 — 95) —

cos ¢, .

JoS? d¢,- DS2 dg;
3 dz 3 dz

(4.3)

The structure is described by the three functions ¢;(z), where z is the coordinate
in the c direction. The lowest-energy state can be obtained by solving the Euler-
Lagrange equations for the angles ¢;(z):

_ 2JyS? d2¢J

3 a2 T 20,5%[sin(¢j—1 — ;) + sin(¢j41 — 4;)] + T—— gusHS

3 sing; =0. (44)
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Notice that the DM term does not appear in this differential equation.

At this point we wish to mention that if J; is negative (that is, if the interchain
coupling is ferromagnetic), it is much simpler to determine the ground state; in fact
Moriya and Miyadai [45] discussed such a case in the low field limit. In this case the
phases are uniform in each plane (¢; = ¢, = ¢3) so that the system (4.3) is equivalent
to the Frank-van der Merwe model and the other incommensurate systems [46]. Thus
the incommensurate-commensurate transition in the case of ferromagnetic interchain
belongs to the usual class of the incommensurate systems, as discussed in Appendix
B.

The above model allows both commensurate and incommensurate structures,
favored at high and low fields respectively. In the commensurate structures, each
layer is in the same state, and the phases ¢; are independent of z. Incommensurate
structures are periodic in z, with wavenumber ¢; the period Z = 2 /g, which has
to be determined to minimize £, is not a rational multiple of the a-b plane spacing,
Clearly the above continuum model (4.3) predicts an incommensurate structure at
small fields and a completely aligned structure at very high fields; the latter is a
commensurate structure with all spins parallel to the field (¢;(z) = 0 for all z), and
is obtained at fields greater than the saturation field H, = 18J5/gug.

4.2.1 Modification of Helical Spin Structure in a Weak
Field

For zero field, Eq. (4.4) gives immediately an incommensurate structure, which is

simply a helical spin structure:

$1(2) = gz, ¢2(2) = 61(2) — 27/3, 43(2) = ¢1(2) + 27/3. (4.5)
Minimization of the energy leads to ¢ = go = D/(2J,). Since the actual value of ¢
is go = arctan(D/2Jp) [19], and since D = 0.089 x 2J; is small in CsCuCl; (giving a
period of about 70 layers), the continuum approximation is expected to be valid. For
nonzero field, Eq. (4.5) does not satisfy the Euler-Lagrange equation (4.4), since the
last term in Eq. (4.4) produces a modulation of ¢;. As far as the weak-field region

is concerned, the modulation is small so that it can be taken into account by

$1(z) = gz + a; sin(gz),
¢a2(2) = ¢1(z — Z/3), (4-6)
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¢3(z) = $1(z + Z/3),

where Z = 2w /q. The amplitude a; of the modulation is obtained by substituting
(4.6) into (4.3) and keeping the first-order correction in H; the result is

— 2h .
A AR

1 —_—
+ 9/,

here g is not the same as the zero-field value go, but is obtained by minimizing the

(4.7)

energy. Substituting (4.6) and (4.7) into (4.3) and minimizing £ with respect to g,

we obtain
27 —1

q 1 2h
Lo 14| ==
qo 2 1+_2_J_0_2

9J; 9%
We see that g decreases with increasing magnetic field. In fact, neutron-scattering

(4.8)

experiments on CsCuCl;[24-26] have detected a decrease of ¢ due to the magnetic
field, which is consistent with this result. The magnetization in the low-field limit is

given by

(4.9)

showing that the magnetization at low fields is slightly suppressed by the helical
structure.

One could extend this treatment to higher field by generalizing (4.6) to

$1(z) = qz + f: arsin(£gz),
=1

¢2(2) = ¢1(2 — Z2/3), (4.10)
¢3(z) = ¢(2 + Z/3),
where {a,} and ¢ are determined by minimizing £. This method, which is often used
to study incommensurate structures, is certainly applicable to the present problem,
but we present a different approach, which is equivalent to the above, but better

suited to discuss the incommensurate-commensurate transition at high fields.

4.2.2 Incommensurate-Commensurate Transition

Let us discuss in a more general way incommensurate states of (4.4) and the transi-

tion to the commensurate state. First we note that, from Eq. (4.4), commensurate
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structures corresponding to ¢;(z)=independent of z are determined from the condi-
tion (1.8). Therefore the most stable commensurate states are degenerate as given

by (1.9). The energy of these commensurate states is given by
Ecomm = —2Jo5% — 3J,5%(1 + 3h3). (4.11)

These commensurate energies should be compared with the energy of incommensu-
rate structures.

Now the problem is to determine the incommensurate state from the Euler-
Lagrange equations (4.4). The incommensurate state is given by numerical solutions
of the equations. This problem allows many kinds of solutions according to the
boundary conditions. Among many solutions, the optimal incommensurate struc-
ture is obtained when each of the three phases ¢; changes by 27 over a period
¢i(z + Z) = ¢j(z) + 2n. Solutions for each field are optimized with respect to the
wavenumber gq.

Figure 4.1 shows the optimal wavenumber ¢ as a function of the magnetic field
calculated by using the parameters for CsCuCl;. The result for weak fields is con-
sistent with (4.8). The wavenumber decreases monotonically with increasing field
and vanishes at the transition field A, ~ 0.473. Above A, the commensurate state,
incompletely aligned, is stable up to the saturation field. Figure 4.1(b) shows that
the wavenumber ¢ vanishes linearly as the transition is approached. This linear be-
havior near the transition is the most important feature in the incommensurate state
of CsCuCl;. It is markedly different from what is standard in the incommensurate
systems such as the Frank-van der Merwe model. As discussed in Appendix B, the
wavenumber vanishes as the inverse of a logarithm near the transition, in conven-
tional models. The unusual behavior of the wavenumber of ¢ in our model can be
traced back to the nontrivial degeneracy in the commensurate state, as discussed
later.

Figure 4.2 shows the average energy density of the incommensurate state (eval-
uated at the optimal wavenumber) measured from the commensurate state: AE =
€ = Ecomm- Part (b) of the figure shows that the energy vanishes quadratically, so
that the transition at A = 0.473 to the incompletely aligned commensurate structure
is second-order.

Figure 4.3 shows the solutions (optimized with respect to the wavenumber q) of

the Euler-Lagrange equation at various fields. The phases are plotted as a function

64



Q/QO

0.12 |3‘\ T T T
0.1 | -
0.08 |- AN -
= \‘\
< 0.06 | i
) N
R
0.04 [ .
\\0\
0.02 - .
\6\
O l 1 ] A |
0.465 0.467 0469 0.471 0.473 0.475
h
(b)

Figure 4.1: Normalized optimal wavenumber g¢/gq as a function of the reduced mag-
netic field h = H/H,; go is the optimal wavenumber D/2J; at h = 0. Part (b) shows
the behavior near the transition to the commensurate structure.
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Figure 4.2: Normalized energy density optimized with respect to the wavenumber as
a function of the reduced field h = H/H,; the quantity plotted is AE(H)/|Bo|, where

Eo = —D?S?/(4Jy). Part (b) shows the behavior of /AE/E, near the transition.
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of 3z/Z in the range 0 < z < Z/3. Outside this range, the phases are given by

$1(z + Z/3) = ¢3(2), 2z + Z/3) = ¢1(2), #s(z+ Z/3) = ¢a(2) + 2m, (4.‘12)

etc. The origin is chosen so that ¢,(0) = 0; the walls (which may not be well de-
fined) are separated by Z/3 and located at z = £Z/6, etc. Figure 4.3(a) shows the
solutions for h = 0.3. We see that the zero-field solution is only slightly modified
by the magnetic field. Figure 4.3(b) shows the solutions for A~ = 0.45. A solitonic
behavior is only moderately developed even though the field value is not far below
the transition field A. = 0.473. The nonmonotonic behavior of the phases seen in
Figs. 4.3(b) and (c) is found for all h > 1/3. It is easily understood as a result of the
nonmonotonic dependence of ¢; and ¢, on ¢; for the commensurate state of a single
layer for the same fields. Figure 4.3(c) shows the phases at a field A ~ 0.4726 (less
than 0.1% below the transition); the structure is very different from what is typical
in the conventional incommensurate systems, since there are no regions where the
order parameters are even nearly constant. As discussed in Appendix B, the incom-
mensurate states in conventional models are divided into well-defined wall regions
and distinct commensurate regions. Between the walls, the order parameter is nearly
constant, at a commensurately allowed value. However in the case of CsCuCls there
are infinitely many commensurately allowed states, due to the nontrivial degeneracy.
Therefore the incommensurate state can gain simultaneously the driving energy (DM
term) and the exchange energy by adopting a spatially varying structure. Therefore
the transition to the commensurate state occurs in more gradual manner than in the
usual cases. This is a reason why the behavior of the wavenumber ¢ near the tran-
sition is different from the conventional models. At large fields, the commensurate
relations Eq. (1.8) are well satisfied in the regions between the walls. The structure
seen in Fig. 4.3(c) is just a sequence of planes each nearly in a commensurate state,
plus a wall region. We note that the walls are not domain walls in the usual sense,
since they do not separate distinct commensurate regions, but they are regions where
one of the phases takes on commensurately forbidden values; the explicit expression
is given by Eq. (1.10).

Figure 4.4 shows the magnetization curve. In the incommensurate state the

magnetization is calculated from

My 2
M= 37 o dz(cos ¢y + cos ¢ + cos ¢3). (4.13)
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Figure 4.3: Phases ¢; as functions of 3z/Z at reduced field (a) h = H/H, = 0.3, (b)

0.45, and (c) = 0.4726(in the next page); the plots cover only 1/3 of the period Z of
the structure.

68



0.6 -

M/ M,

0.4 - -

0 | | I |
0 0.2 04 0.6 0.8 1
h

Figure 4.4: Normalized magnetization M /M, as a function of the reduced magnetic
field h = H/H,; M, is the saturation value gupS of the magnetization.
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In the commensurate state above H,, the magnetization is given by M = Myh. The
result for weak fields is consistent with (4.9). The suppression of the magnetization
is relatively large near A, because of the developing walls. Since the regions between
walls are nearly in commensurate states and the walls are narrow, the magnetization
in the incommensurate state is at most only a few percent below the commensu-
rate value. Therefore the behavior observed experimentally [10,11] is likely due to
quantum fluctuations neglected in the present treatment, as in the case of the field
parallel to the c-axis [21]. This problem is discussed in the next section.

In summary, this section has applied the classical theory to study the nature of
the incommensurate state of CsCuCl; in a transverse field. The classical ground

state of CsCuCl; in transverse field has the following features:

(1) The wavenumber vanishes linearly at the transition to the commensurate state.
(2) The order parameter is neither constant nor nearly constant in the regions be-
tween the walls.

(3) The magnetization in the incommensurate state is at most only a few percent
below the commensurate value.

4) Many spin structures are degenerate for h > h..
&

In particular features (1) and (2) are unusual compared with other conventional
incommensurate systems. They are easily understood to result from the existence
of the nontrivial degeneracy in the commensurate state. In reality quantum fluc-
tuations remove the nontrivial degeneracy. Therefore the classical incommensurate
state does not seem to provide a the realistic description of CsCuCls, although it
is very interesting from a theoretical point of view. We thus expect the classical

incommensurate to be largely modified by quantum fluctuations.

In order to detect the phase transition to the commensurate state, Mino et al.
measured the wavenumber ¢ by neutron-scattering [24,25], examining the (1/3 1/3
8) reflection; § and g are connected through ¢ = 2w6/6. Figure 4.5 shows the ob-
served field dependence of 6. The results for low fields are consistent with Fig. 4.1
in that § decreases with the increasing field. However, around 11T, § stays nearly
constant at about 0.045. These results are contrary to these of Fig. 4.1 which pre-
dicts that 6 decreases monotonically and vanishes around 14T. This plateau region

of g corresponds to the small plateau in the magnetization curve [10,11]. Since the
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Figure 4.5: Observed helical pitch as a function of the magnetic field [24].

experimental results show that the incommensurate structure still exists in this re-
gion, one cannot interpret the magnetization plateau as what has been predicted for
the standard triangular antiferromagnet [3]. To explain this unexpected behavior,
we take into account the effect of quantum fluctuations on the incommensurate state

in the next section.

4.3 Effect of Quantum Fluctuations

In this section we examine the effect of quantum fluctuations. Our goal is to in-
clude the quantum fluctuations in the theory of the incommensurate state and to
explain the plateau in the wavenumber as observed by Mino et al. [24,25]. First we
discuss the effect of quantum fluctuations in the commensurate state [42]. In the
classical theory, many commensurate states are continuously degenerate. Quantum
fluctuations remove this nontrivial degeneracy. This effect can be examined by the
spin-wave theory, as we have done for H||c in section 2.2. When we apply the spin-
wave theory to the commensurate state, the antisymmetric DM term does not appear

in any results. Therefore quantum selection occurs in the same way as in the stan-
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dard triangular antiferromagnet [3). The most stable commensurate configuration is
shown in Fig. 2.1(b) for A < 1/3, and (c) for A > 1/3.

The extension of the spin-wave calculation to the incommensurate state is straight-
forward in principle. One could calculate the 1/S quantum correction to the classical
energy as a function of the wavenumber g. The optimal wavenumber including the
first quantum correction could be obtained by minimizing the energy to order 1/S
with respect to g. However, as shown in Appendix C, the spin-wave theory does
not work well for the incommensurate state. This is because the spin-wave theory
does not take into account sufficiently the breaking of the classical degeneracy in
determining the spin structures, but starts from the classical incommensurate state.
As we have shown in the previous section, the classical incommensurate state is well
described as the sequence of planes each nearly in a commensurate state. In reality
such a spatially varying state should not be stable at large fields because quantum
fluctuations remove the nontrivial degeneracy. The incommensurate state near the
transition field is expected to consist of well-defined walls which separate distinct
commensurate regions. Between the walls, the order parameter should be nearly
constant at the commensurately stable value. This structure is very different from
the classical incommensurate state, and thus difficult to be obtained by the pertur-
bative approach such as the 1/S expansion. Therefore we apply a phenomenological
approach to this problem in the following.

The most important effect of quantum fluctuations in this problem is the breaking
of the classical nontrivial degeneracy. We take this effect into account by adding the

following phenomenological term to the energy density &£:

Ehuct = %/OL dz{—J35%[cos®($1 — ¢2) + cos®($3 — $3) + cos®(¢3 — $1)]}, (4.14)

where J; is assumed to be positive. Introduction of the phenomenological term &g,

is equivalent to introducing the biquadratic term
Bra=—2 Y (Sin- S;n)? (4.15)
bq - 52 L mn m/) .
<t3>n
in the classical Hamiltonian. One can easily see that the biquadratic term Ey, favors
the collinear spin alignment. Since the biquadratic exchange interaction cannot be
present in this S = 1/2 system, we must interpret this term as the energy function

of the order parameters which originates from quantum fluctuations. (Of course
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Figure 4.6: Comparison between the spin-wave calculation AFEgw and the bi-
quadratic function Eyq. The broken lines express E}q and the squares express Esw.
Calculations were performed for the four spin configurations in Fig. 2.1. The values
presented are measured relative to the coplanar structure in Fig. 2.1(d).

thermal fluctuations can also produce the biquadratic term in the expression of the
free energy as explicitly shown in Eq. (1.18.)) In fact the biquadratic term E}q well
approximates the spin-configuration dependence of A Egw. Figure 4.6 compares the
1/S quantum correction Egw from the spin-wave theory and the biquadratic function
Eyq. The quantities have been calculated for the four spin configurations shown in
Fig. 2.1. The energy is measured from the coplanar structure in Fig. 2.1(d), in both
cases. As shown in the figure, good agreement between Eyq and Egw is obtained for
the parameters Jo = 28K, J; = 4.9K, and S = 1/2, if we choose J, = 0.2K. Thus we
expect that the phenomenological term £qyc; captures well enough the effect of the

breaking of the classical degeneracy by the quantum fluctuations.

The Euler-Lagrange equations for the angles ¢;(z), in the presence of &gy, are

JoS? d2¢;
S 20 4 20,5 in(g5 ~ ¢5) + sin(diar — 4,)]

—J,S?[sin 2(¢;—1 — @;) +sin 2(p; 41 — 4;)] + ng3HS sing; = 0. (4.16)
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First we look at the commensurate solutions. The nontrivial degeneracy in the
ground state is removed by J; in the same way as by the quantum fluctuations.
However the optimal spin configurations are not the same as in (1.19) and (1.20),
but have to be obtained by minimizing the energy £ (including £gyci). The lowest

spin configuration in the commensurate state is determined as follows.

[1] low-field structure
At low field the most stable structure is ¢; = 7, ¢, = —¢s = ¢. The angle ¢ is

determined by minimizing the energy, which leads to the condition

gusH _

6J1(1 — 2cos @) + 6J;cos ¢(1 + 2 cos 2¢) + 5

0. (4.17)

The angle ¢ decreases monotonically with the magnetic field, and reaches 0 at H; =
(6J1 — 3J3)S/gus.

[II] intermediate collinear structure
The collinear alignment with ¢; = 7, ¢, = ¢3 = 0 is stable over a finite range of
magnetic field H; < H < H,, where H, = 6(J; + J;)S/gup. The magnetization in

this region is one-third the saturation value.

[ITI] high-field structure
For H, < H, the most stable state is the one with ¢, = ¢3. The phases ¢; and

¢ are determined by the following equations:

. . H
—12J; sin(¢y — ¢2) + 6J25in2(d; — ¢2) + g;z; sin¢;, = 0,
(4.18)

. H
—12J; sin(¢; — ¢1) + 6J2sin 2(p; — 1) + gu; sin ¢, = 0.

All spins become parallel to the magnetic field (¢; = ¢2 = ¢3 = 0) at the saturation
field H, = 18(J; — J2)S/gus.

Let us now determine the incommensurate state by solving the Euler-Lagrange
equation (4.16). For zero field, the incommensurate state is a simple helical structure
as in Eq. (4.5), with the optimal wavenumber gy = D/2Jy. &gyt does not change the
zero-field spin configuration, as expected. On the other hand, at large fields Egy
makes large modifications to the incommensurate state, as shown below.

Figure 4.7 shows the optimal wavenumber ¢ as a function of the magnetic field

for various values of J;. The result for weak fields is almost the same as in the
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classical case. (Here and below in this chapter “classical” means J, = 0.) For
each parameter value we see a remarkable difference from the classical result near
h =1/3. For J, = 0.13K, the wavenumber remains nearly constant at about half g;.
This result seems to be consistent with the experimental result shown in Fig. 4.5.
After the plateau, the wavenumber decreases rapidly and vanishes at h. = 0.446. For
J2 = 0.17K, the wavenumber shows a hollow, rather than a plateau; the transition
to the commensurate state occurs at h. = 0.442. This strange behavior of ¢ near
h = 1/3 can be easily understood as an effect of £gue;. Since this term strongly
favors the collinear state, the commensurate state is relatively stable near A = 1/3,
as shown in Fig 4.9. Therefore the wavenumber shows relatively rapid decrease in
the vicinity of A = 1/3. A marked difference can be seen for J, = 0.2K, which best
approximates the spin-wave calculation. The collinear state is too strongly favored
by Eguct, so that there appears an intermediate commensurate phase over the finite
field region 0.318 < A < 0.348. The second transition to the commensurate state
occurs at h, = 0.439. It seems that the leading-order calculation in the 1/S expansion
overestimates the effect of quantum fluctuations. In fact we saw in section 3.3 that
the next-order correction acts oppositely to the leading-order term. We conclude

that J, = 0.13K gives the best result for the incommensurate state of CsCuCl;.

The transition field H. to the commensurate state is smaller for larger J>. This is
due to the fact that &g, favors the unique commensurate state so that incommen-
surate state cannot gain the DM energy. Near the transition to the commensurate
state, the wavenumber vanishes rapidly, in contrast to the classical case. Figure 4.8
shows the behavior of the wavenumber near the transition field h.. We see that the

wavenumber vanishes as the inverse of a logarithm:
g ~ —afln(h. — h), (4.19)

where a is some constant. As shown in Appendix B, this logarithmic behavior is
usual in conventional models of incommensurate-commensurate transitions.

Figure 4.9 shows the average energy density of the incommensurate state evalu-
ated at the optimal wavenumber (relative to the incompletely aligned commensurate
structure at the same field). At low fields, we see that | AE| decreases with increasing
field, as for the classical incommensurate state. The nonmonotonic behavior of the

energy density is seen in the intermediate-field region near A = 1/3. This is because
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Figure 4.7: Normalized optimal wavenumber ¢/g, as a function of the reduced mag-
netic field h = H/H, with (a) J; = 0.13K, (b) 0.17K and (c) 0.2K(in the next
page.)
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the term &gyt strongly favors the commensurate, collinear configuration which is
stable near A = 1/3. Corresponding to the field dependence of the energy density
A, the wavenumber ¢ shows various behaviors as shown in Fig,. 4.7.

Figure 4.10 shows the magnetization curve calculated for J; = 0.13K. A plateau-
like behavior appears around A = 1/3. This plateau is due to the fact that, in the
commensurate state, the collinear state with one third of the saturation magnetiza-
tion is stable over the finite field region near A = 1/3. Near the transition to the
commensurate state, the magnetization rapidly approaches the commensurate value
M.omm as

M(h) = Mcomm(he) — b/ In(h, — h), (4.20)

where b is some constant. The logarithmic behavior of the magnetization is caused
by the logarithmic behavior of the wavenumber; similar behavior is found for the case
of ferromagnetic interchain interaction as shown in Appendix B. However this type
of anomaly in the magnetization has not been observed experimentally [11]. We do
not know whether the discrepancy is serious at this stage. Actually the experimental

magnetization curve shows a discrepancy with theory even in low fields. As shown
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Figure 4.10: Normalized magnetization M /M, as a function of the reduced magnetic

field h= H/H,.

in Eq. (4.9), the magnetization of the incommensurate state in low fields should be
lower than in the commensurate state. However the experimental result shows a
relatively large initial slope of the magnetization. More careful experimental and

theoretical analysis is needed on this problem.

Figure 4.11 shows the solutions of the Euler-Lagrange equation (4.16) at vari-
ous fields, at the optimal wavenumber, calculated for J, = 0.13K. Figure 4.11(a)
shows the solution at A = 0.35. Here the wavenumber g is in the plateau region.
We see that one of the three spins is always oriented nearly parallel to the field,
while other two spins rotate keeping an almost antiparallel configuration. Thus the
magnetization is about one third of the saturation value. Figure 4.11(b) shows the
phases at A = 0.44. A solitonic structure is developing; this is very different from
the classical incommensurate state. This solitonic structure becomes more evident
at higher fields near the transition to the commensurate state. Figure 4.11(c) shows
the phases at a field just below the transition. This structure is very different from
the classical incommensurate state shown in Fig. 4.3. There are well-defined wall

regions; the order parameters between the walls are almost constant and equal to
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their commensurately stable values. Clearly this is due to the effect of £gue¢ Which
breaks the continuous degeneracy in the commensurate state. Note that there are
six domains within one period reflecting six-fold degeneracy in the commensurate
structure. The three-fold degeneracy is associated with the interchange of the three
spins, while the two-fold degeneracy is associated with the inversion ¢, — —¢;.

In summary, this section has applied a phenomenological theory to take into ac-
count the effect of quantum fluctuations to the incommensurate state of CsCuCl,.
The phenomenological term &g, makes remarkable modifications to the incommen-

surate state:

(1) The wavenumber shows a nonmonotonic dependence on the magnetic field. The

behavior of the wave number is highly sensitive to the value of J,.

(2) The wavenumber vanishes as the inverse of a logarithm at the transition to the

commensurate state.

(3) At high fields, the incommensurate state has well-defined walls which separate

distinct commensurate regions having nearly constant order parameters.
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(4) The magnetization curve shows a plateau-like behavior around A = 1/3, and a
rapid approach to the commensurate value near the transition to the commensurate

state.

All these modifications are caused by two effects of &gy, the breaking of the
nontrivial degeneracy and the favoring of the collinear state. These are nothing but
the important effects of quantum fluctuations in the triangular antiferromagnet in

the magnetic field.

4.4 Summary

This chapter has studied the magnetic structure of CsCuCl; in a transverse field ap-
plied perpendicular to the c-axis. First the classical theory was applied to determine
the ground-state spin structure. It was shown that the transverse magnetic field
deforms the helical structure and causes a transition to the commensurate state at
h = 0.473. However the classical incommensurate state has unusual properties due to
the existence of the nontrivial degeneracy. The field dependence of the wavenumber
g disagrees with the neutron-scattering experiment [24,25].

We have therefore taken into account the effect of quantum fluctuations by using
the phenomenological term £g,;. We have seen that the incommensurate state at
high fields is largely modified from the classical theory. This is because &g,c¢ breaks
the classical nontrivial degeneracy. In some sense the modified incommensurate state
is similar to many other incommensurate systems. Another effect of £, is that it
favors the collinear spin configuration. This effect induces the peculiar behavior
of the field dependence of the wavenumber g. With an appropriate value for J,,
the wavenumber shows the plateau behavior which is consistent with the neutron-
scattering experiment. After the plateau, the theory predicts a rapid decrease of the
wave number. Therefore neutron-scattering experiments at higher fields are highly
desired.

The spin-wave excitation spectrum in the incommensurate state is extremely
interesting in connection with ESR experiments. Liithi et al. performed ESR ex-
periments up to 14T and found extra modes around 10T in addition to the three
branches [47,48]. Ohta et al. also performed ESR experiments on CsCuCl; for H L ¢
and found similar absorptions around 10T [27,28]. But the correspondence between
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their results and the results of Liithi’s group is not complete. More theoretical anal-
ysis is needed on ESR.
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Chapter 5

Summary and Discussion

We have studied theoretically the effect of quantum fluctuations in hexagonal anti-
ferromagnets in connection with the real material CsCuCl;. We showed that quan-
tum fluctuations are important for determining the ground-state spin structures in
CsCuCls. CsCuCl; has antiferromagnetic c-layers with a triangular lattice; the layers
are ferromagnetically coupled along the c-chain. If the system is truly isotropic, the
classical ground state is nontrivially degenerate; this degeneracy should be removed
by quantum fluctuations. In CsCuCl; there is a small easy-plane anisotropy and
also a small DM interaction; these perturbations select a different type of ground
state from that favored by quantum fluctuations. These competing effects produce
intriguing behavior of CsCuCl; in magnetic fields. Various approaches were applied
to investigate the role of quantum fluctuations.

In chapter 2, we presented a theoretical explanation for the small jump in the
magnetization of CsCuCls, observed for H||c. First we applied the classical theory
and showed that the easy-plane anisotropy favors the umbrella-type spin structure.
Second we performed a spin-wave calculation to take into account quantum fluc-
tuations. We showed that quantum fluctuations select the coplanar structure in
the isotropic system. Comparing these two effects, we concluded that the coplanar
structure is stable for H > H_. The observed magnetization jump is interpreted as a
quantum-fluctuation-induced spin-flop phase transition. Support for this interpreta-
tion is provided by neutron-scattering experiments. But the theory was carried out
only to the lowest order in the anisotropy parameter A and in 1/S. Therefore a bet-
ter approach is desirable to confirm the validity of the theory, and also to solve this
type of problem in the general case. From this reason we applied a complementary

approach in the subsequent chapter.
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In chapter 3, we concentrated on the strong-field region just below saturation.
We mapped the spin-ordering problem near saturation onto the Bose-condensation
problem in the low-density limit. The single-particle energy band has two minima, at
+@, and the ground state in the low-density limit is described by a two-component
Bose-condensation order parameter. The ground-state energy is expressed in terms
of the order parameters, as for the Ginzburg-Landau free energy. The ground-state
energy is minimized to determine the spin structure. From this study we showed
that only three types of spin structures are allowed as the ground state near the
saturation field; the minimum state is determined by the exchange parameters. Using
reasonable parameters for CsCuCl;, we showed that the coplanar structure is stable
in the high-field region; this agrees with the previous result. This approach is suitable
to solve problems of the CsCuCl; type, because we do not need to assume particular
spin structures; instead, we can find the most stable state from the GL-theory-type
argument. Moreover, this theory can give the correct qualitative result for arbitrary
S, even for S = 1/2. However, this approach is useful only in a limited case, the
high-field region near saturation. Therefore a more general treatment is needed to

solve such problems in a weaker magnetic field.

In chapter 4, we studied the magnetic structure of CsCuCl; in a transverse field.
First we applied the classical theory and determined the ground-state spin structure.
The transverse field deforms the helical spin structure and produces a complicated
incommensurate spin structure. The transition to the commensurate state was pre-
dicted to occur at a certain transition field H.. The classical incommensurate state
has unusual features which are due to the existence of the continuous nontrivial
degeneracy in the commensurate state. Therefore the quantum fluctuations in the
incommensurate state ware taken into account by introducing a phenomenological
term which breaks the nontrivial degeneracy. The resulting incommensurate state is
much modified from the classical state at high fields. In contrast to the prediction
of the classical theory, the wavenumber showed a plateau in the intermediate-field
region, consistent with the neutron-scattering result. From this study we showed
that small quantum fluctuations can completely change the magnetic structure of
CsCuCl; in a transverse field. Since the quantum effect has been included in a phe-
nomenological manner, a refinement based the microscopic theory is desired in a

future study.
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It may be a little surprising that quantum fluctuations appear to be important in
this quasi-one-dimensional ferromagnet, because it is generally believed that quantum
fluctuations are very small for the ferromagnetic chain. In fact, the quantum lowering
by the zero-point spin-wave fluctuations A Esw is very small in CsCuCl;, as shown
in Fig. 2.3. However in CsCuCl;, quantum fluctuations should be compared not
with the exchange coupling J;, but rather with the small anisotropy or the DM
interaction. For H||c, the classical ground state is determined by the easy-plane-type
anisotropy A; this should be compared with quantum fluctuations. Since A is small,
quantum fluctuations can dominate in determining the ground state for H > H.. For
H 1 c, the characteristic energy of the helical spin structure is D?/J, ~ 0.2J;, and
thus quantum fluctuations can be important. Namely, the unexpected behavior of
CsCuCl; in magnetic fields is likely to be a manifestation of quantum fluctuations in
nearly degenerate ground states, which can be attributed to the nontrivial degeneracy
in frustrated spin systems.

RbFeCl; is also a hexagonal antiferromagnet with ferromagnetic intrachain ex-
change so that it is another candidate to see experimentally the ground state selected
by quantum fluctuations. In contrast to CsCuCls, in this material the Fe?* ion has
a large single-ion anisotropy of the easy-plane type. The system at low temperatures
can be well described by an effective spin Hamiltonian with fictitious spin S = 1.
In the phase diagram of RbFeCl; for a magnetic field applied perpendicular to the
c-axis [49], there are two commensurate (3-sublattice) phases. By analogy with
CsCuClg, we expect the effect of quantum fluctuations to appear also in RbFeCl;.
Since the crystal field is strong, the system is almost a singlet-ground-state system,
for which the quantum effect becomes more important. The magnetic ordering in
such a singlet-ground-state system with frustration is an interesting problem left for

future study.
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Appendix A

Excitation Spectrum in the
High-Field Region

This appendix finds the spin-wave excitation spectrum in the high-field region near
saturation, based on the hard-core-boson representation presented in chapter 3. The

excitation energy E}, is determined by the pole of the one-particle Green function as
G(k: Ek)—l =0. (Ail)

In order to calculate the Green function, we have to introduce the following Green

functions
Gk, k', w) = —i / dte™(T[ax(8)al]), (A.2)
where k' = k, k + Q, k — Q, and
F(k, ¥, w) = —i [ dte"(Tlag(t)ay]), (A.3)
Ftke, k', w) = —i / dte!(T[al,(¢)al, ]), (A4)

where k' = —k, —k+Q, —k— Q. The Green functions are calculated from the Dyson

equations:
G(k, k', w) = GO(k, W) {6 g+ [Ena(k, k", w)G(R", k', w)+E1a(k, k", w) FH(K", k', w)]},
k"

Fi(k, k', w) = GOk, —w) Y [Ea(k, k", w)G(E", k', w)+Z01 (K", k, —w) F (k" k', w))].
k"
(A.5)

Figures A.1 and A.2 show the diagrams for the self energy in the low-density limit.

Although the calculation is straightforward, it is not easy to write the solution

in an explicit form. We show only the results for the low-energy excitations. There
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are two low-energy branches near k = +Q corresponding to the minima of the bare
spectrum. One remains gapless; the expression near the minimum is same for the

three spin-structure in Fig. 3.3, namely

By = \[(H. — H)[2J3k2 + 3J(k2 + k2)]. (A.6)

The spectrum is linear at small & as is usual in antiferromagnets. The other branch

has an energy gap. For the umbrella-type structure, the energy gap is given by
T
AE = (H, — H) (fi _ 1) . (A7)
1

Note that AE < 0for I'; > T';, reflecting the instability of this state. The energy gap

for the coplanar structures vanishes in the lowest-order approximation in H. — H.
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Appendix B

Incommensurate State for J; <0

This appendix discusses the incommensurate state in the case of a ferromagnetic
interchain interaction. If the interchain coupling is ferromagnetic (J; < 0), spins
should be completely aligned ferromagnetically in the c-plane and thus the spin
structure is expressed by only one order parameter ¢. In this case a transition from
the helical state to the completely aligned ferromagnetic state is expected to occur.
The energy density measured from the commensurate state (ferromagnetic state) is
1 rE 2 [ 9¢; ’ 29¢;

Ag:f/o dz[JoS (_E — DS E—+HS(1—cos¢)], (B.1)
where gup is taken to be 1 for simplicity. The above model is equivalent to the Frank-
Van der Merwe model [46] which appears in many problems of incommensurate-

commensurate transitions [50]. The Euler-Lagrange equation for the phase ¢ is

- 2J032§§ + HSsing = 0. (B.2)

This particular equation is called the sine-Gordon equation; it is the equation of
motion of a pendulum under gravity, apart from some changes in notation. For
zero field, Eq. (B.2) immediately gives a simple helical siructure ¢(z) = gz with
optimal wavenumber go = D/2J;. For nonzero field, we obtain analytical solutions of
Eq. (B.2) as follows. Multiplying Eq. (B.2) by d¢/dz and performing the integration

over z, one finds

2 (48"
— JS 5 —HScos¢p =C, (B.3)
where C is the constant of integration. The solutions of the Euler-Lagrange equation

can be obtained by integrating Eq. (B.3).
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Figure B.1: Phase ¢ as a function of z for the single-soliton solution (B.5). The
center of the wall is located at z=0.
(1) single-soliton solution (figure B.1)

The solution for a single soliton connects two commensurate states, one at z =
—oo and other at z = co. We choose ¢ =0 at z = —c0 and ¢ = 27 at z = co. This
boundary condition gives C = —HS. Then we obtain the following equation for ¢:

dp  (2H . ¢
7\ 75y (B.4)

An easy integration gives
¢ = 4tan~" exp[s(z — )], (B.5)

where z is a constant of integration and x = \/H/2JyS. The wall energy Eya is de-
fined as the energy difference between the single-soliton state and the commensurate

state:

dz d

o0 . 2 .
Eyan = / dz [JoS2 (%) - D.S’2dL;J + gupHS(1 — cos ¢)

H
2JoS
When the wall energy is positive, the commensurate state has lower energy than

= 16J,5?

—2rDS?. (B.6)

the state with a single soliton. Therefore the critical field of the incommensurate-
commensurate transition is defined by E.y = 0 which leads to
w2 D?S

32Jp

H = (B.7)
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Figure B.2: Phase ¢ as a function of z for the multiple-solution solution (B.8).

For H < H, the incommensurate state with many walls (the multiple-soliton solu-

tion) is stable.

(2) multiple-soliton solution (figure B.2)

The Euler-Lagrange equation (B.2) also has solutions corresponding to a periodic

array of walls. These solutions are expressed in terms of Jacobi elliptic functions:

¢=m+2am [%(z - zo)] , (B.8)
where the function am(u) is defined by
¢ dé
u= /0 m, ¢ = a.m(u) = am(u, IC) (B9)
The period Z and the wavenumber g are connected to k by the following relation:
27 TK /2 dé
=z T w® W=k ipate (B.10)

The energy density is expressed by the following formula

1\ 8 [H
AE = —DS% +2HS (1 - 1?2) + ﬁ\/ 57 5B k208 (B.11)
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where the function E(k) is defined by

wf2
E(k) = .;- [ . /1 — k?sin? 66 (B.12)

Figure B.3 shows the optimal wavenumber g as a function of the magnetic field. The
incommensurate-commensurate transition ¢ = 0 corresponds to k = 1. When £ is
very close to 1, the functions K(k) and E(k) behave as

1 1-—4k? 16 1—k?
~ (= - B.
K(k) (2+ 3 )1111__]02 YR (B.13)
1—k? 16

B(k) = 1- — (1 —In .1—_—@) . (B.14)
Using the above expressions, one can write the energy density near the transition as

8S q 64H.S { q g0
AL ~ - (H.— H) ((Jo) +— (QO) exp ( 20 ) (B.15)

The first term can also be written as Eqa1/Z; this is the single-soliton energy multi-
plied by the soliton density. The second term comes from the repulsive interaction
between the walls. The wavenumber g varies rapidly near the transition, where it

vanishes as the reciprocal of a logarithm:

2
9_____ T
o A < B) (B.16)
Figure B.4 shows the magnetization (evaluated at the optimal wavenumber):
M 1 7% 2 4
E = 'Z b COS¢ = ]{:—2- —-1- EK—EE(]G). (B17)

Near the transition, the magnetization logarithmically approaches the saturation

value:
M 1 4

M- th@-om (B.18)
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Figure B.3: Normalized optimal wavenumber g/qo as a function of the magnetic field
H; go = D/2J, is the optimal wavenumber at H = 0.

M/ M,

0 —
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H

Figure B.4: Normalized magnetization M /M, as a function of the magnetic field H;
M, is the saturation value of the magnetization.
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Appendix C

Spin-Wave Theory of the
Incommensurate State

This appendix presents the spin-wave theory of the incommensurate state. Here we
treat the incommensurate state as a long-period commensurate state; the period in
the c-direction is L.. In the simplest approximation, L. would be approximately 70
layers at H = 0 and about 130 layers at the plateau. (In a more accurate treatment,
one could take L. near an integer multiple of 70 for H = 0 and corresponding values
on the plateau.) As a first step, we determine the classical values of the phases ¢; for
specified period L. and field H. Here we should not use the continuum approximation
(4.4), but rather solve the equivalent discrete problem. Actually the solutions of the
discrete problem agree with the results for the continuous case within reasonable
accuracy. The spin-wave Hamiltonian is then derived by using the Holstein-Primakoff
transformation, just as in section 2.2. The equivalent of equation (2.42) is
Hsw = Ea — g );, ; Ci + g % z; ;{A,-,,,vp(k)[a},(k)a,-.p(k) + ag(—k)aly (=k)]
+Bj jwlak(R)aky (=k) + a(—k)aju(k)]}. (C.1)
Here j = 1,2,3 is the sublattice index and ! = 1,---, L. is the layer index; Eg is
the classical energy for specified period L. and field H. The matrices A and B are
defined by

.Aj[’jqu(k) = Cﬂ(Sle‘(Sm + B'lj+1,¢eik’6jlj6m+1 + B-,;,;_le'i"‘éj:jél.;_l
+Ej41,5Vk0505416m + Ejo1,5v_615-16m, (C.2)

—_ ths g, . . —ik
Bﬂ:j"'(k) = Aj,l+1,le‘ '63’_761’1-1-1 + A J1-1€ * '5jlj6p;_1

+Dj41,5,Vk0505416m + Djy jav_g65ti-16m, (C.3)
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where the definitions of the constants A, B,C, D and F are
1.
Ajuigrg = —Jolcos(djier — d) — 1] — -Z-D sin(@ji41 — @i1)], (C.4)
1.
Bj410 = —Jo[cos(gjer — ¢) +1] - 3D sin(¢;1+1 — d51)], (C.5)

Cji = 2Jo[cos(¢j141 — ¢51) + cos(dji — 1))
+D[sin($;14+1 — ¢51) + sin(djr — $ji-1)]

+18J,h cos ¢j; — 6J1[cos(Pj4u — 1) + cos(j—u — di1)], (C.6)

Djisj0 = 3J1[cos(djpa — ¢j) — 1], (C§7)

Ejysgg = 3D[cos(dj+a — ¢52) + 1]. (C.8)

The next step is to find the spin-wave Hamiltonian Hsw in diagonal form:
S S
Hsw = Ea— 5 % ZI Ca+t 3 Zl“’j!(k)[a}t(k)aﬂ(k) + aj(—k)al(=k)], (C.9)
3 ks
where a;;(k) and a;;(k) are related though the following Bogoliubov transformation:

aji(k) = Tinlul] (k)osu(k) + o§ O (k)alu(—F)],

. , (C.10)
a’}l(_k) = qur['ug’; y )(k)a}.,.(—k) + 'Ug‘l’ ! )(k)aj'u(—k)].
The Bogoliubov equations for 4 and v are
(.A + B)(u(ﬂ) + 'v(j')) = wﬂ(u(ﬂ) — ’U(ﬂ)),
. (C.11)
(A = B)(uY) — vy = wy(ul + o),

where u and v are 3L.-component vectors defined by an equation similar to Eq. (2.49).

The spin-wave energy w;i(k) is given by the solution of
det[(A4 — B)(A+ B) - w*] = 0. (C.12)
Then we find the energy to order 1/S as
S S
E = Ey - —ZZC,;+—ZZU)11(’G) (C13)
2% 3 2% 7

We minimize the energy with respect to the period, and find the optimal wavenumber
g =2n/L..
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Figure C.1 shows the energy of the incommensurate state to order 1/S (evalu-
ated at the optimal wavenumber g shown in Fig. C.2), which is measured from the
classical energy of the commensurate state. The broken lines show the energy of the
commensurate states in Fig. 2.1(b), (¢) and (d). We find that the energy of the in-
commensurate state becomes higher than that of the commensurate state for 2 > 0.3.
As shown in Fig. C.2, the optimal wavenumber g is still finite at 2~ = 0.3, and only
slightly below the classical value. However, we cannot conclude that a first-order
transition to the commensurate state occurs at h = 0.3. As we have shown in section
4.2, the classical incommensurate state has no regions where the order parameters
are nearly constant. Therefore the classical incommensurate state in the infinite
L. limit does not approach to a specific commensurate state. (Actually we cannot
specify the commensurate state because of the nontrivial degeneracy.) Consequently
the energy of the incommensurate state to order 1/S does not approach that of the
lowest commensurate state in the limit L, — oo. For this reason the transition to
the commensurate state cannot be discussed by the spin-wave theory. The crossing
of the energy in Fig. C.1 signifies that the spin-wave theory does not work well in

the theory of the incommensurate state.
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Figure C.1: The energy of the incommensurate state to order 1/S optimized with
respect to the wavenumber ¢ (open diamond). The energy is measured from that of
the classical commensurate state at the same field. The broken lines are the energies
calculated for the commensurate states in Fig. 2.1(b),(c) and (d).
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Figure C.2: Normalized optimal wavenumber g as a function of the reduced magnetic
field h = H/H, (open diamond). The solid line shows the classical result (same as
Fig. 4.1).
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