To English version

2019年度の記録
日時 : 3月2日(土) 16:00〜17:00
場所 : 東京理科大学神楽坂キャンパス341教室(3号館4階)
講演者 : Alexander Hock (ミュンスター大学)
講演タイトル : Exact solution of matricial \phi^3_2 model to
all genus by topological recursion
アブストラクト : Developed methods will be extended to find exact solution
for the \phi_2^3 matrix model with an external matrix E in the large N
limit.
This model can be understood as regularized Kontsevich model, where the
regularization ensures UV finiteness in 2 dimensions in case of
linear eigen
values. The universal structure of topological recursion is used
and slightly
affected by the regularization for the one boundary (puncture)
sector.
All correlation functions of genus g with B boundary components
are achieved
by a differential operator A_X acting on the one boundary solution.
The results
are exact and describes the summation of all weighted 3 valent
graphs on
a B-punctured Riemann surface of genus g. Even though a \phi^3
model is
unstable, it arises as a exactly solvable noncommutative qunatum
field theory
on a highly deformed Moyal space.
日時 : 4月27日(土) 15:00〜17:15
場所 : 東京理科大学神楽坂キャンパス331教室
15:00〜16:00
講演者 : 小林 穂乃香 (東京理科大学)
講演タイトル : 擬双曲空間内の平均曲率一定な部分多様体
の擬双曲的ガウス写像
アブストラクト : We investigated oriented surfaces of constant mean and
Gaussian curvatures and non-diagonalizable shape operator in pseudo-hyperbolic
space.
It is known that such Lorentzian surfaces in 3-dimensional anti-de Sitter
space are
either a B-scroll or a complex circle.In this talk, we first state result
for the type numbers
of the pseudo-hyperbolic Gauss maps of a B-scroll and a complex circle.
Secondly, we state results for the type numbers of the pseudo-hyperbolic
Gauss maps of
generalized umbilical hypersurfaces which are a natural generalizations of B-scrolls in the
general dimensional anti-de Sitter space.Also, we state constructions of
consider as
surfaces can be generalized umbilical hypersurfaces in the pseudo-hyperbolic space and
pseudo-sphere of index 2 and B-scroll in 5-dimensional pseudo-hyperbolic space of index 2.
This talk is based on a joint work with Naoyuki Koike.
16:15〜17:15
講演者 : 本田 淳史 (横浜国立大学)
講演タイトル : 3次元ローレンツ多様体内の有界なガウス曲率
を持つ混合型曲面
アブストラクト :A mixed type surface is a connected regular surface in
a Lorentzian 3-manifold with non-empty spacelike and timelike point sets. The induced
metric of a mixed type surface is a signature-changing metric, and their
lightlike points
may be regarded as singular points of such metrics. In this talk, we investigate
the behavior
of Gaussian curvature at a non-degenerate lightlike point of a mixed type surface.
To characterize the boundedness of Gaussian curvature at a non-degenerate
lightlike
points, we introduce several fundamental invariants along non-degenerate
lightlike points,
such as the lightlike singular curvature and the lightlike normal curvature. Moreover, using
the results by Pelletier and Steller, we obtain the Gauss-Bonnet type formula
for mixed
type surfaces with bounded Gaussian curvature. This talk is based on a
joint work
(arXiv:1811.11392) with K. Saji (Kobe University) and K. Teramoto (Kyushu
University).
日時 : 5月18日(土) 15:00〜17:15
場所 : 東京理科大学神楽坂キャンパス331教室
15:00〜16:00
講演者 : 竹内 司 (東京理科大学)
講演タイトル : Recursion
operatorとSymplectic-Haantjes多様体
の構成について
アブストラクト : For a completely integrable system, the way of
finding the first integrals is not formulated in general. In classical
mechanics, a completely integrable systems in the sense of Liouville
are called simply an integrable system. It is well known there are
several approaches to find the first integrals such as the method of
Lax, the Lie algebra adject from the soliton theory, etc. Also, certain
ways of characterizing integrable systems with (1, 1)-tensors is
investigated, recently. Known examples of integrable systems with
(1, 1)-tensors are recursion operators and symplectic-Haantjes manifolds.
For a dynamical system, the system is proved to be integrable if there
exists a (1, 1)-tensor which satisfies certain conditions. In this talk,
using their method we construct recursion operators and
symplectic-Haantjes manifolds for several Hamiltonian systems of two
degrees of freedom.
This talk is based on a joint work with Akira Yoshioka and Kiyonori
Hosokawa.
16:15〜17:15
講演者 : 中村 友哉 (早稲田大学)
講演タイトル : Hom-Lie亜代数に対するLie亜代数に
平行な理論の進展について
アブストラクト :Hom-Lie亜代数は、Lie亜代数を切断上の
線形写像でひねったような構造をもつベクトルバンドルである。
その概念の元となるHom-Lie代数は結合代数上の$\sigma$-微分の
研究で導入され、Virasoro代数などとの関連も知られている。
Hom-Lie亜代数は「Lie代数に対するLie亜代数」と同様、Hom-Lie代数
の幾何学的な一般化として定義され、Lie亜代数に対して成り立つ多くの
結果が平行して成り立つことが知られている。
本講演では既に知られているいくつかの結果を紹介するとともに、講演者が
Hom-Lie亜代数上定義したHom-Nijenhuis構造やHom-Dirac構造などに
対する結果なども紹介する。
日時 : 9月28日(土) 15:30〜17:30
場所 : 東京理科大学神楽坂キャンパス223教室
講演者 : 大仁田 義裕 (大阪市立大学)
講演タイトル : Minimal Maslov number of R-spaces canonically embedded
in Einstein-Kähler C-spaces
アブストラクト : An $R$-space is a compact homogeneous space obtained as an
orbit of the isotropy representation of a Riemannian symmetric space. It
is known
that each $R$-space has the canonical embedding into a Kähler $C$-space
as a
real form which is a compact embedded totally geodesic Lagrangian submanifold.
The minimal Maslov number of Lagrangian submanifolds in symplectic manifolds
is an invariant under Hamiltonian isotopies and very fundamental to the
study of
the Floer homology for intersections of Lagrangian submanifolds. In this talk I
provide a survey on such nice properties of $R$-spaces as Lagrangian
submanifolds and my recent work on the minimal Maslov number of $R$-spaces
canonically embedded in Einstein-Kähler $C$-spaces.
日時 : 10月26日(土) 15:00〜17:15
場所 : 東京理科大学神楽坂キャンパス331教室
15:00-16:00
講演者: 河井 公大朗(学習院大)
タイトル: Poincare
DGA of Hodge typeとその応用
アブストラクト:
多様体Mがformalとは、大雑把にいえばその実ホモトピー群がde Rhamコホモロジーから定まるときをいう。
この場合、M上のMassey積はすべて消える。これは多様体Mがformalになるための位相的障害を与える。
formalという概念は、一般にdifferential
graded algebra (DGA)に対して定義できる。
そこで、Poincare
DGA of Hodge typeというDGAに対して考察し、その結果を多様体に応用する。
そして、ある幾何構造が入るための位相的障害を導く。
16:15-17:15
講演者: 服部広大(慶応大)
タイトル: 幾何学的量子化と測度付きグロモフ・ハウスドルフ収束について
アブストラクト:
シンプレクティック多様体とその上の前量子化束の組に対してシンプレクティック形式と整合する
複素構造の1パラメーター族に対する正則切断の1パラメーター族の挙動を調べたい。
複素構造に対応するケーラー偏極の族が、ラグランジュファイブレーションに対応する実偏極に
収束するとき、正則切断の族はボーア・ゾンマーフェルトファイバーに局所化するという現象が、
トーリック多様体などのいくつかの例で観測されている。
本講演では、測度距離空間の収束の観点からボーア・ゾンマーフェルトファイバーへの局所化を
記述できることを説明する。
2018年度の記録
日時 : 12月22日(土) 15:30〜17:45
場所 : 東京理科大学神楽坂キャンパス233教室
15:30〜16:30
講演者 : 國川 慶太 (東北大学)
講演タイトル : ハイパーケーラー多様体の中の平均曲率流
講演アブストラクト :
Leung-Wanはハイパーケーラー多様体の中で, ハイパーラグランジュ部分多様体
という概念を導入し,この性質が平均曲率流に沿って保たれることを示した.
本講演では,ハイパーラグランジュ部分多様体に対して自然に定義される
「ツイスターエネルギー」というものを新たに考え, 十分小さいツイスターエネルギー
を持つハイパーラグランジュ部分多様体が平均曲率流に沿って複素ラグランジュ
部分多様体に収束することを紹介する.
なお,この講演は高橋良輔氏との共同研究に基づく.
.
16:45〜17:45
講演者 : 新田 泰文 (東京理科大学)
講演タイトル : Uniform relative stability and coercivity
for polarized toric manifolds
講演アブストラクト :
We study a relation between algebro-geometric stability and the growth of
the modified K-energy which characterizes the extremal Kahler metric as
a critical point. In this talk, we introduce uniform relative K-polystability
for polarized toric manifolds and show that it implies the coercivity
of the
modified K-energy modulo the maximal torus action. If time allows,
we will
also discuss on the converse direction.
This talk is based on a joint work with Shunsuke Saito and Naoto
Yotsutani.
アクセス : ここをクリックしてください。
世話人: 小池 直之,田中 真紀子,佐古 彰史,新田 泰文,馬場 蔵人,只野 誉,山本 光
前神楽坂幾何学セミナーの記録(2002年〜2017年)の記録につきましては
こちらをご覧ください