JP
menu

Publications

Original Papers

For more information on our accomplishments, please click below.
Elsevier Pure Search

2023

  1. "Electron Trap Analysis of Tin(II) Niobate Photocatalyst Particles Using Photoacoustic Infrared Spectroscopy",
    T. Shinoda, T. Hayashi, Y. Yamaguchi, A. Kudo, N. Murakami, J. Phys. Chem. C, 2023, 127, 13706-13711.
    DOI: 10.1021/acs.jpcc.3c02831

  2. "Carbon Nitride Loaded with an Ultrafine, Monodisperse, Metallic Platinum-Cluster Cocatalyst for the Photocatalytic Hydrogen-Evolution Reaction",
    D. Yazaki, T. Kawawaki, D. Hirayama, M. Kawachi, K. Kato, S. Oguchi, Y. Yamaguchi, S. Kikkawa, Y. Ueki, S. Hossain, D. J. Osborn, F. Ozaki, S. Tanaka, J. Yoshinobu, G. F. Metha, S. Yamazoe, A. Kudo, A. Yamakata, and Y. Negishi, Small, 2023, 2208287.
    DOI: 10.1002/smll.202208287

  3. "Water Splitting and CO2 Reduction over AgSr2Ta5O15 Photocatalyst Developed by Valence Band Control Strategy",
    T. Takayama, A. Iwase, and A. Kudo, Chem. Commun., Chem. Commun., 2023, 59, 7911-7914.
    DOI: 10.1039/D3CC01481A

  4. "Examination of photocatalytic Z-scheme system for overall water splitting with its electronic structure",
    T. Tani, Y. Yamaguchi, T. Nishimi, T. Uchida, and A. Kudo, Phys. Chem. Chem. Phys., 2023, 25, 11418-11428.
    DOI: 10.1039/D3CP00241A

pagetop

2022

  1. "Photoacoustic Spectroscopic Analysis of Electron-Trapping Sites in Titanium(IV) Oxide Photocatalyst Powder Treated by Ball Milling",
    T. Shinoda, Y. Yamaguchi, A. Kudo, and N. Murakami, J. Phy. Chem. C, 2022, 126, 20975-20982.
    DOI: 10.1021/acs.jpcc.2c07064

  2. "Well-Defined Single and Bundled Rutile Nanorods in Mesoporous Silica for Efficient Hydrogen Evolution Photocatalysis",
    K. Vibulyaseak, N. Paengjun, A. Kudo, and M. Ogawa, ACS Appl. Nano Mater., 2022, 5, 18004-18013.
    DOI: 10.1021/acsanm.2c03972

  3. "Photocatalytic CO2 reduction by a Z-scheme mechanism in an aqueous suspension of particulate (CuGa)0.3Zn1.4S2, BiVO4 and a Co complex operating dual-functionally as an electron mediator and as a cocatalyst",
    T. M. Suzuki, S. Yoshino, K. Sekizawa, Y. Yamaguchi, A. Kudo, and T. Morikawa, Appl. Catal. B Environ., 2022, 316, 121600.
    DOI: 10.1016/j.apcatb.2022.121600

  4. "Powder-Based Cu3VS4 Photocathode Prepared by Particle-Transfer Method for Water Splitting Using the Whole Range of Visible Light",
    H. Fukai, K. Nagatsuka, Y. Yamaguchi, A. Iwase, and A. Kudo, ECS J. Solid State Sci. Technol., 2022, 11, 063002.
    DOI: 10.1149/2162-8777/ac71c8

  5. "Photocatalytic Overall Water Splitting Under Visible Light Enabled by a Particulate Conjugated Polymer Loaded with Palladium and Iridium**",
    Y. Bai, C. Li, L. Liu, Y. Yamaguchi, M. Bahri, H. Yang, A. Gardner, M. A. Zwijnenburg, N. D. Browning, A. J. Cowan, A. Kudo, A. I. Cooper, and R. S. Sprick, Angew. Chem., 2022, 134, e202201299.
    DOI: 10.1002/ange.202201299

  6. "Photocatalytic CO2 Reduction Using Water as an Electron Donor under Visible Light Irradiation by Z-Scheme and Photoelectrochemical Systems over (CuGa)0.5ZnS2 in the Presence of Basic Additives",
    S. Yoshino, A. Iwase, Y. Yamaguchi, T. M. Suzuki, T. Morikawa, and A. Kudo, J. Am. Chem. Soc., 2022, 144, 2323-2332.
    DOI: 10.1021/jacs.1c12636

pagetop

2021

  1. "Preparation of Nanoparticle Porous-Structured BiVO4 Photoanodes by a New Two-Step Electrochemical Deposition Method for Water Splitting",
    S. Ho-Kimura, W. Soontornchaiyakul, Y. Yamaguchi, and A. Kudo, Catalysts, 2021, 11, 136.
    DOI: 10.3390/catal11010136

  2. "Highly crystalline Na0.5Bi0.5TiO3 of a photocatalyst valence-band-controlled with Bi(III) for solar water splitting",
    K. Watanabe, Y. Iikubo, Y. Yamaguchi, and A. Kudo, Chem. Commun., 2021, 57, 323-326.
    DOI: 10.1039/D0CC07371G

pagetop

2020

  1. "New Visible-Light-Driven H2- and O2-Evolving Photocatalysts Developed by Ag(I) and Cu(I) Ion Exchange of Various Layered and Tunneling Metal Oxides Using Molten Salts Treatments",
    K. Watanabe, K. Iwashina, A. Iwase, S. Nozawa, S. Adachi, and A. Kudo, Chem. Mater., 2020, 32, 10524-10537.
    DOI: 10.1021/acs.chemmater.0c03461

  2. "In situ photoacoustic analysis of near-infrared absorption of rhodium-doped strontium titanate photocatalyst powder",
    T. Shinoda, Y. Yamaguchi, A. Kudo, and N. Murakami, Chem. Commun., 2020, 56, 14255-14258.
    DOI: 10.1039/D0CC06414A

  3. "Z-Schematic CO2 Reduction to CO through Interparticle Electron Transfer between SrTiO3:Rh of a Reducing Photocatalyst and BiVO4 of a Water Oxidation Photocatalyst under Visible Light",
    S. Yoshino, K. Sato, Y. Yamaguchi, A. Iwase, and A. Kudo, ACS Appl. Energy Mater., 2020, 3, 10001-10007.
    DOI: 10.1021/acsaem.0c01684

  4. "Long wavelength visible light-responsive SrTiO3 photocatalysts doped with valence-controlled Ru for sacrificial H2 and O2 evolution",
    S. Suzuki, A. Iwase, and A. Kudo, Catal. Sci. Technol., 2020, 10, 4912-4916.
    DOI: 10.1039/D0CY00600A

  5. "Template Synthesis of Well-Defined Rutile Nanoparticles by Solid-State Reaction at Room Temperature",
    K. Vibulyaseak, A. Kudo, and M. Ogawa, Inorg. Chem., 2020, 59, 7934-7938.
    DOI: 10.1021/acs.inorgchem.0c01214

  6. "Z-Schematic Solar Water Splitting Using Fine Particles of H2-Evolving (CuGa)0.5ZnS2 Photocatalyst Prepared by a Flux Method with Chloride Salts",
    S. Yoshino, A. Iwase, Y. H. Ng, R. Amal, and A. Kudo, ACS Appl. Energy Mater., 2020, 3, 5684-5692.
    DOI: 10.1021/acsaem.0c00661

  7. "Activation of Water-Splitting Photocatalysts by Loading with Ultrafine Rh-Cr Mixed-Oxide Cocatalyst Nanoparticles",
    W. Kurashige, Y. Mori, S. Ozaki, M. Kawachi, S. Hossain, T. Kawawaki, C. J. Shearer, A. Iwase, G. F. Metha, S. Yamazoe, A. Kudo, and Y. Negishi, Angew. Chem. Int. Ed., 2020, 59, 7076-7082.
    DOI: 10.1002/anie.201916681

  8. "Photocatalyst Z-scheme system composed of a linear conjugated polymer and BiVO4 for overall water splitting under visible light",
    Y. Bai, K. Nakagawa, A. J. Cowan, C. M. Aitchison, Y. Yamaguchi, M. A. Zwijnenburg, A. Kudo, R. S. Sprick, and A. I. Cooper, J. Mater. Chem. A, 2020, 8, 16283-16290.
    DOI: 10.1039/D0TA04754F

  9. "Solar water splitting over Rh0.5Cr1.5O3-loaded AgTaO3 of a valence-band-controlled metal oxide photocatalyst",
    K. Watanabe, A. Iwase, and A. Kudo, Chem. Sci., 2020, 11, 2330-2334.
    DOI: 10.1039/C9SC05909A

pagetop

2019

  1. "The Importance of the Interfacial Contact: Is Reduced Graphene Oxide Always an Enhancer in Photo(Electro)Catalytic Water Oxidation?",
    Z. Xie, H. L. Tan, X. Wen, Y. Suzuki, A. Iwase, A. Kudo, R. Amal, J. Scott, and Y. H. Ng, ACS Appl. Mater. Interfaces, 2019, 11, 23125-23134.
    DOI: 10.1021/acsami.9b03624

  2. "Water Splitting on Aluminum Porphyrins To Form Hydrogen and Hydrogen Peroxide by One Photon of Visible Light",
    F. Kuttassery, S. Sagawa, S. Mathew, Y. Nabetani, A. Iwase, A. Kudo, H. Tachibana, and H. Inoue, ACS Appl. Energy Mater., 2019, 2, 8045-8051.
    DOI: 10.1021/acsaem.9b01552

  3. "Impact of lattice defects on water oxidation properties in SnNb2O6 photoanode prepared by pulsed-laser deposition method",
    H. Matsuo, M. Katayama, T. Minegishi, T. Yamada, A. Kudo, and K. Domen, Journal of Applied Physics, 2019, 126, 094901.
    DOI: 10.1063/1.5097731

  4. "Solar Water Splitting under Neutral Conditions Using Z-Scheme Systems with Mo-Doped BiVOV4 as an O2-Evolving Photocatalyst",
    A. Iwase, Y. Udagawa, S. Yoshino, Y. H. Ng, R. Amal, and A. Kudo, Energy Technol., 2019, 1900358.
    DOI: 10.1002/ente.201900358

  5. "Atomic-Level Understanding of the Effect of Heteroatom Doping of the Cocatalyst on Water-Splitting Activity in AuPd or AuPt Alloy Cluster-Loaded BaLa4Ti4O15",
    W. Kurashige, R. Hayashi, K. Wakamatsu, Y. Kataoka, S. Hossain, A. Iwase, A. Kudo, S. Yamazoe, and Y. Negishi, ACS Appl. Energy Mater., 2019, 2, 4175-4187.
    DOI: 10.1021/acsaem.9b00426

  6. "Effects of Coapplication of Rh-Doping and Ag-Substitution on the Band Structure of Li2TiO3 and the Photocatalytic Property",
    K. Watanabe, A. Iwase, S. Nozawa, S. Adachi, and A. Kudo, ACS Sustainable Chem. Eng., 2019, 7, 9881-9887.
    DOI: 10.1021/acssuschemeng.9b00513

  7. "Z-scheme water splitting by microspherical Rh-doped SrTiO3 photocatalysts prepared by a spray drying method",
    H. P. Duong, T. Mashiyama, M. Kobayashi, A. Iwase, A. Kudo, Y. Asakura, S. Yin, M. Kakihana, and H. Kato, Appl. Catal. B Environ., 2019, 252, 222-229.
    DOI: 10.1016/j.apcatb.2019.04.009

  8. "Z-scheme photocatalyst systems employing Rh- and Ir-doped metal oxide materials for water splitting under visible light irradiation",
    A. Kudo, S. Yoshino, T. Tsuchiya, Y. Udagawa, Y. Takahashi, M. Yamaguchi, I. Ogasawara, H. Matsumoto, and A. Iwase, Faraday Discuss., 2019, 215, 313-328.
    DOI: 10.1039/C8FD00209F

  9. "Cu3MS4 (M=V, Nb, Ta) and its Solid Solutions with Sulvanite Structure for Photocatalytic and Photoelectrochemical H2 Evolution under Visible-Light Irradiation",
    S. Ikeda, N. Aono, A. Iwase, H. Kobayashi, and A. Kudo, ChemSusChem, 2019, 12, 1977-1983.
    DOI: 10.1002/cssc.201802702

  10. "Revealing the role of the Rh valence state, La doping level and Ru cocatalyst in determining the H2 evolution efficiency in doped SrTiO3 photocatalysts",
    D. H. K. Murthy, H. Matsuzaki, Q. Wang, Y. Suzuki, K. Seki, T. Hisatomi, T. Yamada, A. Kudo, K. Domen, and A. Furube, Sustain. Energy Fuels, 2019, 3, 208-218.
    DOI: 10.1039/C8SE00487K

pagetop

2018

  1. "Photoelectrochemical Reduction of CO2 to CO Using a CuGaS2 Thin-film Photocathode Prepared by a Spray Pyrolysis Method",
    S. Ikeda, Y. Tanaka, T. Kawaguchi, S. Fujikawa, T. Harada, T. Takayama, A. Iwase, and A. Kudo, Chem. Lett., 2018, 47, 1424-1427.
    DOI: 10.1246/cl.180720

  2. "Pathways to electrochemical solar-hydrogen technologies",
    S. Ardo, D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J. Schuttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik, Energy Environ. Sci., 2018, 11, 2768-2783.
    DOI: 10.1039/C7EE03639F

  3. "Water Splitting over Ba2In2O5 Photocatalysts with a Brownmillerite Structure and the Effect of La-substitution on Its Band Structure and Photocatalytic Activities",
    K. Nakagawa, A. Iwase, and A. Kudo, Chem. Lett., 2018, 47, 1526-1529.
    DOI: 10.1246/cl.180758

  4. "Photoexcited Electrons Driven by Doping Concentration Gradient: Flux-Prepared NaTaO3 Photocatalysts Doped with Strontium Cations",
    L. An, M. Kitta, A. Iwase, A. Kudo, N. Ichikuni, and H. Onishi, ACS Catal., 2018, 8, 9334-9341.
    DOI: 10.1021/acscatal.8b02437

  5. "Denaturation of Lysozyme with Visible-light-responsive Photocatalysts of Ground Rhodium-doped and Ground Rhodium-antimony-co-doped Strontium Titanate",
    S. Usuki, K. Yamatoya, Y. Kawamura, Y. Yamaguchi, N. Suzuki, K. Katsumata, C. Terashima, A. Fujishima, A. Kudo, and K. Nakata, J. Oleo Sci., 2018, 67, 1521-1533.
    DOI: 10.5650/jos.ess18155

  6. "Z-Schematic and visible-light-driven CO2 reduction using H2O as an electron donor by a particulate mixture of a Ru-complex/(CuGa)1-xZn2xS2 hybrid catalyst, BiVO4 and an electron mediator",
    T. M. Suzuki, S. Yoshino, T. Takayama, A. Iwase, A. Kudo, and T. Morikawa, Chem. Commun., 2018, 54, 10199-10202.
    DOI: 10.1039/C8CC05505J

  7. "Enhanced H2 evolution over an Ir-doped SrTiO3 photocatalyst by loading of an Ir cocatalyst using visible light up to 800 nm",
    S. Suzuki, H. Matsumoto, A. Iwase, and A. Kudo, Chem. Commun., 2018, 54, 10606-10609.
    DOI: 10.1039/C8CC05344H

  8. "Efficient photocatalytic degradation of gaseous acetaldehyde over ground Rh-Sb co-doped SrTiO3 under visible light irradiation",
    Y. Yamaguchi, S. Usuki, K. Yamatoya, N. Suzuki, K. Katsumata, C. Terashima, A. Fujishima, A. Kudo, and K. Nakata, RSC Adv., 2018, 8, 5331-5337.
    DOI: 10.1039/C7RA11337D

  9. "Powder-based (CuGa1-yIny)1-xZn2xS2 solid solution photocathodes with a largely positive onset potential for solar water splitting",
    T. Hayashi, R. Niishiro, H. Ishihara, M. Yamaguchi, Q. Jia, Y. Kuang, T. Higashi, A. Iwase, T. Minegishi, T. Yamada, K. Domen, and A. Kudo, Sustain. Energy Fuels, 2018, 2, 2016-2024.
    DOI: 10.1039/C8SE00079D

  10. "Nitrogen/fluorine-codoped rutile titania as a stable oxygen-evolution photocatalyst for solar-driven Z-scheme water splitting",
    A. Miyoshi, J. J. Vequizo, S. Nishioka, Y. Kato, M. Yamamoto, S. Yamashita, T. Yokoi, A. Iwase, S. Nozawa, A. Yamakata, T. Yoshida, K. Kimoto, A. Kudo, and K. Maeda, Sustain. Energy Fuels, 2018, 2, 2025-2035.
    DOI: 10.1039/C8SE00191J

  11. "Decomposition of an aqueous ammonia solution as a photon energy conversion reaction using a Ru-loaded ZnS photocatalyst",
    A. Iwase, K. Ii, and A. Kudo, Chem. Commun., 2018, 54, 6117-6119.
    DOI: 10.1039/C8CC02639D

  12. "Au25-Loaded BaLa4Ti4O15 Water-Splitting Photocatalyst with Enhanced Activity and Durability Produced Using New Chromium Oxide Shell Formation Method",
    W. Kurashige, R. Kumazawa, D. Ishii, R. Hayashi, Y. Niihori, S. Hossain, L. V. Nair, T. Takayama, A. Iwase, S. Yamazoe, T. Tsukuda, A. Kudo, and Y. Negishi, J. Phys. Chem. C, 2018, 122, 13669-13681.
    DOI: 10.1021/acs.jpcc.8b00151

  13. "Phase relations in the pseudo ternary system In2O3-TiO2-BO (B: Zn, Co and Ni) at 1200 °C in air",
    F. Brown, I. E. Jacobo-Herrera, V. E. Alvarez-Montano, N. Kimizuka, T. Hirano, R. Sekine, S. J. Denholme, N. Miyakawa, A. Kudo, A. Iwase, and Y. Michiue, Journal of Solid State Chemistry, 2018, 258, 865-875.
    DOI: 10.1016/j.jssc.2017.12.020

  14. "Preparation of Mo- and W-doped BiVO4 fine particles prepared by an aqueous route for photocatalytic and photoelectrochemical O2 evolution",
    A. Iwase, S. Nozawa, S. Adachi, and A. Kudo, J. Photochem. Photobiol. A Chem., 2018, 353, 284-291.
    DOI: 10.1016/j.jphotochem.2017.11.025

  15. "Enhancement of CO2 reduction activity under visible light irradiation over Zn-based metal sulfides by combination with Ru-complex catalysts",
    T. M. Suzuki, T. Takayama, S. Sato, A. Iwase, A. Kudo, and T. Morikawa, Appl. Catal. B Environ., 2018, 224, 572-578.
    DOI: 10.1016/j.apcatb.2017.10.053

  16. "Photochemical hydrogen evolution on metal ion surface-grafted TiO2-particles prepared by sol/gel method without calcination",
    F. Kuttassery, D. Yamamoto, S. Mathew, S. N. Remello, A. Thomas, Y. Nabetani, A. Iwase, A. Kudo, H. Tachibana, and H. Inoue, Journal of Photochemistry and Photobiology A: Chemistry, 2018, 358, 386-394.
    DOI: 10.1016/j.jphotochem.2017.09.048

  17. "Photocatalytic CO2 reduction using water as an electron donor over Ag-loaded metal oxide photocatalysts consisting of several polyhedra of Ti4+, Zr4+, and Ta5+",
    T. Takayama, H. Nakanishi, M. Matsui, A. Iwase, and A. Kudo, J. Photochem. Photobiol. A Chem., 2018, 358, 416-421.
    DOI: 10.1016/j.jphotochem.2017.10.002

pagetop

2017

  1. "Characterization of Rh:SrTiO3 photoelectrodes surface-modified with a cobalt clathrochelate and their application to the hydrogen evolution reaction",
    M. Antuch, P. Millet, A. Iwase, A. Kudo, S. A. Grigoriev, and Y. Z. Voloshin, Electrochimica. Acta., 2017, 258, 255-265.
    DOI: 10.1016/j.electacta.2017.10.018

  2. "A particulate (ZnSe)0.85(CuIn0.7Ga0.3Se2)0.15 photocathode modified with CdS and ZnS for sunlight-driven overall water splitting",
    Y. Goto, T. Minegishi, Y. Kageshima, T. Higashi, H. Kaneko, Y. Kuang, M. Nakabayashi, N. Shibata, H. Ishihara, T. Hayashi, A. Kudo, T. Yamada, and K. Domen, J. Mater. Chem. A, 2017, 5, 21242-21248.
    DOI: 10.1039/C7TA06663E

  3. "Solar Water Splitting Utilizing a SiC Photocathode, a BiVO4 Photoanode, and a Perovskite Solar Cell",
    A. Iwase, A. Kudo, Y. Numata, M. Ikegami, T. Miyasaka, N. Ichikawa, M. Kato, H. Hashimoto, H. Inoue, O. Ishitani, and H. Tamiaki, ChemSusChem, 2017, 10, 4420-4423.
    DOI: 10.1002/cssc.201701663

  4. "Selective Inactivation of Bacteriophage in the Presence of Bacteria by Use of Ground Rh-Doped SrTiO3Photocatalyst and Visible Light",
    Y. Yamaguchi, S. Usuki, Y. Kanai, K. Yamatoya, N. Suzuki, K. Katsumata, C. Terashima, T. Suzuki, A. Fujishima, H. Sakai, A. Kudo, and K. Nakata, ACS Appl. Mater. Interfaces, 2017, 9, 31393-31400.
    DOI: 10.1021/acsami.7b07786

  5. "Influence of light intensity on the kinetics of light-driven hydrogen evolution using Rh-doped SrTiO3: a study by photoelectrochemical impedance spectroscopy",
    M. Antuch, A. Kudo, and P. Millet, Bulg. Chem. Com. Special Issue C, 2017, 49, 95-101.

  6. "Development of Ir and La-codoped BaTa2O6 photocatalysts using visible light up to 640 nm as an H2-evolving photocatalyst for Z-schematic water splitting",
    A. Iwase, and A. Kudo, Chem. Commun., 2017, 53, 6156-6159.
    DOI: 10.1039/C7CC02687K

  7. "Capturing local structure modulations of photoexcited BiVO4 by ultrafast transient XAFS",
    Y. Uemura, D. Kido, A. Koide, Y. Wakisaka, Y. Niwa, S. Nozawa, K. Ichiyanagi, R. Fukaya, S. Adachi, T. Katayama, T. Togashi, S. Owada, M. Yabashi, K. Hatada, A. Iwase, A. Kudo, S. Takakusagi, T. Yokoyama, and K. Asakura, Chem. Commun., 2017, 53, 7314-7317.
    DOI: 10.1039/C7CC02201H

  8. "Efficient Solar Water Oxidation to Oxygen over Mo-doped BiVO4 Thin Film Photoanode Prepared by a Facile Aqueous Solution Route",
    A. Iwase, S. Ikeda, and A. Kudo, Chem. Lett., 2017, 46, 651-654.
    DOI: 10.1246/cl.170052

  9. "Development of Various Metal Sulfide Photocatalysts Consisting of d0, d5, and d10 Metal Ions for Sacrificial H2 Evolution under Visible Light Irradiation",
    T. Takayama, I. Tsuji, N. Aono, M. Harada, T. Okuda, A. Iwase, H. Kato, and A. Kudo, Chem. Lett., 2017, 46, 616-619.
    DOI: 10.1246/cl.161192

  10. "Particulate Photocatalyst Sheets Based on Carbon Conductor Layer for Efficient Z-Scheme Pure-Water Splitting at Ambient Pressure",
    Q. Wang, T. Hisatomi, Y. Suzuki, Z. Pan, J. Seo, M. Katayama, T. Minegishi, H. Nishiyama, T. Takata, K. Seki, A. Kudo, T. Yamada, and K. Domen, J. Am. Chem. Soc., 2017, 139, 1675-1683.
    DOI: 10.1021/jacs.6b12164

  11. "A CoOx-modified SnNb2O6photoelectrode for highly efficient oxygen evolution from water",
    R. Niishiro, Y. Takano, Q. Jia, M. Yamaguchi, A. Iwase, Y. Kuang, T. Minegishi, T. Yamada, K. Domen, and A. Kudo, Chem. Commun., 2017, 53, 629-632.
    DOI: 10.1039/C6CC08262A

  12. "Highly Active NaTaO3-Based Photocatalysts for CO2 Reduction to Form CO Using Water as the Electron Donor",
    H. Nakanishi, K. Iizuka, T. Takayama, A. Iwase, and A. Kudo, ChemSusChem, 2016, 10, 112-118.
    DOI: 10.1002/cssc.201601360

  13. "Photocatalytic CO2 reduction using water as an electron donor by a powdered Z-scheme system consisting of metal sulfide and an RGO-TiO2 composite",
    T. Takayama, K. Sato, T. Fujimura, Y. Kojima, A. Iwase, and A. Kudo, Faraday Discuss., 2017, 198, 397-407.
    DOI: 10.1039/C6FD00215C

  14. "Particulate photocatalyst sheets for Z-scheme water splitting: advantages over powder suspension and photoelectrochemical systems and future challenges",
    Q. Wang, T. Hisatomi, M. Katayama, T. Takata, T. Minegishi, A. Kudo, T. Yamada, and K. Domen, Faraday Discuss., 2017, 197, 491-504.
    DOI: 10.1039/C6FD00184J

pagetop

2016

  1. "Ultrastable low-bias water splitting photoanodes via photocorrosion inhibition and in situ catalyst regeneration",
    Y. Kuang, Q. Jia, G. Ma, T. Hisatomi, T. Minegishi, H. Nishiyama, M. Nakabayashi, N. Shibata, T. Yamada, A. Kudo, and K. Domen, Nat. Energy, 2016, 2, 16191.
    DOI: 10.1038/nenergy.2016.191

  2. "Boron-doped diamond semiconductor electrodes: Efficient photoelectrochemical CO2 reduction through surface modification",
    N. Roy, Y. Hirano, H. Kuriyama, P. Sudhagar, N. Suzuki, K. Katsumata, K. Nakata, T. Kondo, M. Yuasa, I. Serizawa, T. Takayama, A. Kudo, A. Fujishima, and C. Terashima, Sci. Rep., 2016, 6, 38010.
    DOI: 10.1038/srep38010

  3. "Photocatalyst Sheets Composed of Particulate LaMg1/3Ta2/3O2N and Mo-Doped BiVO4 for Z-Scheme Water Splitting under Visible Light",
    Z. Pan, T. Hisatomi, Q. Wang, S. Chen, M. Nakabayashi, N. Shibata, C. Pan, T. Takata, M. Katayama, T. Minegishi, A. Kudo, and K. Domen, ACS Catal., 2016, 6, 7188-7196.
    DOI: 10.1021/acscatal.6b01561

  4. "Photoreduced Graphene Oxide as a Conductive Binder to Improve the Water Splitting Activity of Photocatalyst Sheets",
    Z. Pan, T. Hisatomi, Q. Wang, S. Chen, A. Iwase, M. Nakabayashi, N. Shibata, T. Takata, M. Katayama, T. Minegishi, A. Kudo, and K. Domen, Adv. Funct. Mater., 2016, 26, 7011-7019.
    DOI: 10.1002/adfm.201602657

  5. "Water Splitting and CO2 Reduction under Visible Light Irradiation Using Z-Scheme Systems Consisting of Metal Sulfides, CoOx-Loaded BiVO4, and a Reduced Graphene Oxide Electron Mediator",
    A. Iwase, S. Yoshino, T. Takayama, Y. H. Ng, R. Amal, and A. Kudo, J. Am. Chem. Soc., 2016, 138, 10260-10264.
    DOI: 10.1021/jacs.6b05304

  6. "Interfacing BiVO4 with Reduced Graphene Oxide for Enhanced Photoactivity: A Tale of Facet Dependence of Electron Shuttling",
    H. L. Tan, H. A. Tahini, X. Wen, R. J. Wong, X. Tan, A. Iwase, A. Kudo, R. Amal, S. C. Smith, and Y. H. Ng, Small, 2016, 12, 5295-5302.
    DOI: 10.1002/smll.201601536

  7. "Visible-Light-Responsive CuLi1/3Ti2/3O2 Powders Prepared by a Molten CuCl Treatment of Li2TiO3 for Photocatalytic H2 Evolution and Z-Schematic Water Splitting",
    K. Iwashina, A. Iwase, S. Nozawa, S. Adachi, and A. Kudo, Chem. Mater., 2016, 28, 4677-4685.
    DOI: 10.1021/acs.chemmater.6b01557

  8. "Photoelectrochemical water splitting enhanced by self-assembled metal nanopillars embedded in an oxide semiconductor photoelectrode",
    S. Kawasaki, R. Takahashi, T. Yamamoto, M. Kobayashi, H. Kumigashira, J. Yoshinobu, F. Komori, A. Kudo, and M. Lippmaa, Nat. Commun., 2016, 7, 11818.
    DOI: 10.1038/ncomms11818

  9. "A Front-Illuminated Nanostructured Transparent BiVO4Photoanode for >2% Efficient Water Splitting",
    Y. Kuang, Q. Jia, H. Nishiyama, T. Yamada, A. Kudo, and K. Domen, Adv. Energy Mater., 2016, 6, 1501645.
    DOI: 10.1002/aenm.201501645

  10. "Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%",
    Q. Wang, T. Hisatomi, Q. Jia, H. Tokudome, M. Zhong, C. Wang, Z. Pan, T. Takata, M. Nakabayashi, N. Shibata, Y. Li, I. D. Sharp, A. Kudo, T. Yamada, and K. Domen, Nat. Mater, 2016, 15, 611-615.
    DOI: 10.1038/nmat4589

  11. "Solar-driven BiVO4 Photoanodes Prepared by a Facile Screen Printing Method",
    A. Iwase, H. Ito, Q. Jia, and A. Kudo, Chem. Lett., 2016, 45, 152-154.
    DOI: 10.1246/cl.150979

  12. "Photocatalytic Degradation of Gaseous Acetaldehyde over Rh-doped SrTiO3 under Visible Light Irradiation",
    Y. Yamaguchi, C. Terashima, H. Sakai, A. Fujishima, A. Kudo, and K. Nakata, Chem. Lett., 2016, 45, 42-44.
    DOI: 10.1246/cl.150907

pagetop

2015

  1. "An effect of Ag(I)-substitution at Cu sites in CuGaS2 on photocatalytic and photoelectrochemical properties for solar hydrogen evolution",
    H. Kaga, Y. Tsutsui, A. Nagane, A. Iwase, and A. Kudo, J. Mater. Chem. A, 2015, 3, 21815-21823.
    DOI: 10.1039/C5TA04756K

  2. "Photocatalysis using a Wide Range of the Visible Light Spectrum: Hydrogen Evolution from Doped AgGaS2",
    K. Yamato, A. Iwase, and A. Kudo, ChemSusChem, 2015, 8, 2902-2906.
    DOI: 10.1002/cssc.201500540

  3. "Photocatalytic Properties of Layered Metal Oxides Substituted with Silver by a Molten AgNO3 Treatment",
    H. Horie, A. Iwase, and A. Kudo, ACS Appl. Mater. Interfaces, 2015, 7, 14638-14643.
    DOI: 10.1021/acsami.5b01555

  4. "Improvement of hydrogen evolution under visible light over Zn1-2x(CuGa)xGa2S4 photocatalysts by synthesis utilizing a polymerizable complex method",
    C. S. Quintans, H. Kato, M. Kobayashi, H. Kaga, A. Iwase, A. Kudo, and M. Kakihana, J. Mater. Chem. A, 2015, 3, 14239-14244.
    DOI: 10.1039/C5TA02114F

  5. "Z-scheme water splitting under visible light irradiation over powdered metal-complex/semiconductor hybrid photocatalysts mediated by reduced graphene oxide",
    T. M. Suzuki, A. Iwase, H. Tanaka, S. Sato, A. Kudo, and T. Morikawa, J. Mater. Chem. A, 2015, 3, 13283-13290.
    DOI: 10.1039/C5TA02045J

  6. "Photocatalytic reduction of nitrate ions to dinitrogen over layered perovskite BaLa4Ti4O15 using water as an electron donor",
    M. Oka, Y. Miseki, K. Saito, and A. Kudo, Appl. Catal. B Environ., 2015, 179, 407-411.
    DOI: 10.1016/j.apcatb.2015.05.037

  7. "N-Methylation of Amines with Methanol at Room Temperature",
    V. N. Tsarev, Y. Morioka, J. Caner, Q. Wang, R. Ushimaru, A. Kudo, H. Naka, and S. Saito, Org. Lett., 2015, 17, 2530-2533.
    DOI: 10.1021/acs.orglett.5b01063

  8. "Surface Modification of CoOx Loaded BiVO4 Photoanodes with Ultrathin p-Type NiO Layers for Improved Solar Water Oxidation",
    M. Zhong, T. Hisatomi, Y. Kuang, J. Zhao, M. Liu, A. Iwase, Q. Jia, H. Nishiyama, T. Minegishi, M. Nakabayashi, N. Shibata, R. Niishiro, C. Katayama, H. Shibano, M. Katayama, A. Kudo, T. Yamada, and K. Domen, J. Am. Chem. Soc., 2015, 137, 5053-5060.
    DOI: 10.1021/jacs.5b00256

  9. "Controlled Loading of Small Aun Clusters (n = 10?39) onto BaLa4Ti4O15 Photocatalysts: Toward an Understanding of Size Effect of Cocatalyst on Water-Splitting Photocatalytic Activity",
    Y. Negishi, Y. Matsuura, R. Tomizawa, W. Kurashige, Y. Niihori, T. Takayama, A. Iwase, and A. Kudo, J. Phys. Chem. C, 2015, 119, 11224-11232.
    DOI: 10.1021/jp5122432

  10. "Solar hydrogen evolution using a CuGaS2 photocathode improved by incorporating reduced graphene oxide",
    A. Iwase, Y. H. Ng, R. Amal, and A. Kudo, J. Mater. Chem. A, 2015, 3, 8566-8570.
    DOI: 10.1039/C5TA01237F

  11. "Photocatalytic Water Splitting and CO2 Reduction over KCaSrTa5O15 Nanorod Prepared by a Polymerized Complex Method",
    T. Takayama, A. Iwase, and A. Kudo, Bull. Chem. Soc. Jpn., 2015, 88, 538-543.
    DOI: 10.1246/bcsj.20140350

  12. "Utilization of Metal Sulfide Material of (CuGa)1-xZn2xS2 Solid Solution with Visible Light Response in Photocatalytic and Photoelectrochemical Solar Water Splitting Systems",
    T. Kato, Y. Hakari, S. Ikeda, Q. Jia, A. Iwase, and A. Kudo, J. Phys. Chem. Lett., 2015, 6, 1042-1047.
    DOI: 10.1021/acs.jpclett.5b00137

  13. "Photocatalytic Water Splitting over Rod-shaped K3Ta3Si2O13 and Block-shaped Ba3Ta6Si4O26 Prepared by Flux Method",
    T. Takayama, A. Iwase, and A. Kudo, Chem. Lett., 2015, 44, 306-308.
    DOI: 10.1246/cl.141000

  14. "Sensitization of wide band gap photocatalysts to visible light by molten CuCl treatment",
    K. Iwashina, A. Iwase, and A. Kudo, Chem. Sci., 2015, 6, 687-692.
    DOI: 10.1039/C4SC01829J

  15. "Z-Schematic Water Splitting into H2 and O2 Using Metal Sulfide as a Hydrogen-Evolving Photocatalyst and Reduced Graphene Oxide as a Solid-State Electron Mediator",
    K. Iwashina, A. Iwase, Y. H. Ng, R. Amal, and A. Kudo, J. Am. Chem. Soc., 2015, 137, 604-607.
    DOI: 10.1021/ja511615s

pagetop

2014

  1. "The KCaSrTa5O15 photocatalyst with tungsten bronze structure for water splitting and CO2 reduction",
    T. Takayama, K. Tanabe, K. Saito, A. Iwase, and A. Kudo, Phys. Chem. Chem. Phys., 2014, 16, 24417-24422.
    DOI: 10.1039/C4CP03892D

  2. "Synthesis of propylene from renewable allyl alcohol by photocatalytic transfer hydrogenolysis",
    J. Caner, Z. Liu, Y. Takada, A. Kudo, H. Naka, and S. Saito, Catal. Sci. Technol., 2014, 4, 4093-4098.
    DOI: 10.1039/C4CY00329B

  3. "Electronic Structure and Photoelectrochemical Properties of an Ir-Doped SrTiO3 Photocatalyst",
    S. Kawasaki, R. Takahashi, K. Akagi, J. Yoshinobu, F. Komori, K. Horiba, H. Kumigashira, K. Iwashina, A. Kudo, and M. Lippmaa, J. Phys. Chem. C, 2014, 118, 20222-20228.
    DOI: 10.1021/jp5062573

  4. "Enhanced Activity of BiVO4 Powdered Photocatalyst Under Visible Light Irradiation by Preparing Microwave-Assisted Aqueous Solution Methods",
    K. Soma, A. Iwase, and A. Kudo, Catal. Lett., 2014, 144, 1962-1967.
    DOI: 10.1007/s10562-014-1361-y

  5. "Hydrothermal-synthesized SrTiO3 photocatalyst codoped with rhodium and antimony with visible-light response for sacrificial H2 and O2 evolution and application to overall water splitting",
    R. Niishiro, S. Tanaka, and A. Kudo, Appl. Catal. B Environ., 2014, 150-151, 187-196.
    DOI: 10.1016/j.apcatb.2013.12.015

  6. "BiVO4-Ru/SrTiO3:Rh composite Z-scheme photocatalyst for solar water splitting",
    Q. Jia, A. Iwase, and A. Kudo, Chem. Sci., 2014, 5, 1513.
    DOI: 10.1039/C3SC52810C

  7. "Effects of Cocatalyst on Carrier Dynamics of a Titanate Photocatalyst with Layered Perovskite Structure",
    M. Yabuta, T. Takayama, K. Shirai, K. Watanabe, A. Kudo, T. Sugimoto, and Y. Matsumoto, J. Phys. Chem. C, 2014, 118, 10972-10979.
    DOI: 10.1021/jp502775y

  8. "Water Splitting over CaTa4O11 and LaZrTa3O11 Photocatalysts with Laminated Structure Consisting of Layers of TaO6 Octahedra and TaO7 Decahedra",
    M. Matsui, A. Iwase, H. Kobayashi, and A. Kudo, Chem. Lett., 2014, 43, 396-398.
    DOI: 10.1246/cl.130944

  9. "A visible light responsive rhodium and antimony-codoped SrTiO3 powdered photocatalyst loaded with an IrO2 cocatalyst for solar water splitting",
    R. Asai, H. Nemoto, Q. Jia, K. Saito, A. Iwase, and A. Kudo, Chem. Commun., 2014, 50, 2543-2546.
    DOI: 10.1039/C3CC49279F

  10. "Cosubstituting effects of copper(I) and gallium(III) for ZnGa2S4 with defect chalcopyrite structure on photocatalytic activity for hydrogen evolution",
    H. Kaga, and A. Kudo, J. Catal., 2014, 310, 31-36.
    DOI: 10.1016/j.jcat.2013.08.025

pagetop

2013

  1. "Synthesis of highly active rhodium-doped SrTiO3 powders in Z-scheme systems for visible-light-driven photocatalytic overall water splitting",
    H. Kato, Y. Sasaki, N. Shirakura, and A. Kudo, J. Mater. Chem. A, 2013, 1, 12327.
    DOI: 10.1039/C3TA12803B

  2. "Time-Resolved Infrared Absorption Study of SrTiO3 Photocatalysts Codoped with Rhodium and Antimony",
    K. Furuhashi, Q. Jia, A. Kudo, and H. Onishi, J. Phys. Chem. C, 2013, 117, 19101-19106.
    DOI: 10.1021/jp407040p

  3. "Enhanced photocatalytic water splitting by BaLa4Ti4O15 loaded with ∼1 nm gold nanoclusters using glutathione-protected Au25 clusters",
    Y. Negishi, M. Mizuno, M. Hirayama, M. Omatoi, T. Takayama, A. Iwase, and A. Kudo, Nanoscale, 2013, 5, 7188.
    DOI: 10.1039/C3NR01888A

  4. "Fabrication of Highly Crystalline SnNb2O6 Shell with a Visible-Light Response on a NaNbO3 Nanowire Core",
    K. Saito, and A. Kudo, Inorg. Chem., 2013, 52, 5621-5623.
    DOI: 10.1021/ic4002175

  5. "Redox-Selective Generation of Aldehydes and H2from Alcohols under Visible Light",
    Z. Liu, J. Caner, A. Kudo, H. Naka, and S. Saito, Chem. Eur. J., 2013, 19, 9452-9456.
    DOI: 10.1002/chem.201301347

  6. "Electron-Phonon Coupling Dynamics at Oxygen Evolution Sites of Visible-Light-Driven Photocatalyst: Bismuth Vanadate",
    N. Aiga, Q. Jia, K. Watanabe, A. Kudo, T. Sugimoto, and Y. Matsumoto, J. Phys. Chem. C, 2013, 117, 9881-9886.
    DOI: 10.1021/jp4013027

  7. "A Redox-Mediator-Free Solar-Driven Z-Scheme Water-Splitting System Consisting of Modified Ta3N5as an Oxygen-Evolution Photocatalyst",
    S. S. K. Ma, K. Maeda, T. Hisatomi, M. Tabata, A. Kudo, and K. Domen, Chem. Eur. J., 2013, 19, 7480-7486.
    DOI: 10.1002/chem.201300579

  8. "Diameter-dependent photocatalytic performance of niobium pentoxide nanowires",
    K. Saito, and A. Kudo, Dalton Trans., 2013, 42, 6867.
    DOI: 10.1039/C3DT32924K

  9. "[Co(bpy)3]3+/2+ and [Co(phen)3]3+/2+ Electron Mediators for Overall Water Splitting under Sunlight Irradiation Using Z-Scheme Photocatalyst System",
    Y. Sasaki, H. Kato, and A. Kudo, J. Am. Chem. Soc., 2013, 135, 5441-5449.
    DOI: 10.1021/ja400238r

  10. "The effect of Au cocatalyst loaded on La-doped NaTaO3 on photocatalytic water splitting and O2 photoreduction",
    A. Iwase, H. Kato, and A. Kudo, Appl. Catal. B Environ., 2013, 136-137, 89-93.
    DOI: 10.1016/j.apcatb.2013.02.006

  11. "Plasmon-Enhanced Photoluminescence and Photocatalytic Activities of Visible-Light-Responsive ZnS-AgInS2 Solid Solution Nanoparti",
    T. Takahashi, A. Kudo, S. Kuwabata, A. Ishikawa, H. Ishihara, Y. Tsuboi, and T. Torimoto, J. Phys. Chem. C, 2013, 117, 2511-2520.
    DOI: 10.1021/jp3064257

pagetop

2012

  1. "Elucidation of Rh-Induced In-Gap States of Rh:SrTiO3 Visible-Light-Driven Photocatalyst by Soft X-ray Spectroscopy and First-Principles Calculations",
    S. Kawasaki, K. Akagi, K. Nakatsuji, S. Yamamoto, I. Matsuda, Y. Harada, J. Yoshinobu, F. Komori, R. Takahashi, M. Lippmaa, C. Sakai, H. Niwa, M. Oshima, K. Iwashina, and A. Kudo, J. Phys. Chem. C, 2012, 116, 24445-24448.
    DOI: 10.1021/jp3082529

  2. "Solution-phase Synthesis of Stannite-type Ag2ZnSnS4 Nanoparticles for Application to Photoelectrode Materials",
    T. Sasamura, T. Osaki, T. Kameyama, T. Shibayama, A. Kudo, S. Kuwabata, and T. Torimoto, Chem. Lett., 2012, 41, 1009-1011.
    DOI: 10.1246/cl.2012.1009

  3. "Effect of Surface Modification with Layered Double Hydroxide on Reduction of Nitrate to Nitrogen over BaLa4Ti4O15 Photocatalyst",
    M. Adachi, and A. Kudo, Chem. Lett., 2012, 41, 1007-1008.
    DOI: 10.1246/cl.2012.1007

  4. "Adsorptive and Kinetic Properties on Photocatalytic Hydrogenation of Aromatic Ketones upon UV Irradiated Polycrystalline Titanium Dioxide: Differences between Acetophenone and Its Trifluoromethylated Derivative",
    S. Kohtani, E. Yoshioka, K. Saito, A. Kudo, and H. Miyabe, J. Phys. Chem. C, 2012, 116, 17705-17713.
    DOI: 10.1021/jp3056174

  5. "Epitaxial Rh-doped SrTiO3 thin film photocathode for water splitting under visible light irradiation",
    S. Kawasaki, K. Nakatsuji, J. Yoshinobu, F. Komori, R. Takahashi, M. Lippmaa, K. Mase, and A. Kudo, Appl. Phys. Lett., 2012, 101, 033910.
    DOI: 10.1063/1.4738371

  6. "Tunable photoluminescence from the visible to near-infrared wavelength region of non-stoichiometric AgInS2 nanoparticles",
    M. Dai, S. Ogawa, T. Kameyama, K. Okazaki, A. Kudo, S. Kuwabata, Y. Tsuboi, and T. Torimoto, J. Mater. Chem., 2012, 22, 12851.
    DOI: 10.1039/C2JM31463K

  7. "Facile fabrication of an efficient BiVO4 thin film electrode for water splitting under visible light irradiation",
    Q. Jia, K. Iwashina, and A. Kudo, Proc. Natl. Acad. Sci. U.S.A., 2012, 109, 11564-11569.
    DOI: 10.1073/pnas.1204623109

  8. "Photosensitization of ZnO rod electrodes with AgInS2 nanoparticles and ZnS-AgInS2 solid solution nanoparticles for solar cell applications",
    T. Sasamura, K. Okazaki, A. Kudo, S. Kuwabata, and T. Torimoto, RSC Adv., 2012, 2, 552-559.
    DOI: 10.1039/C1RA00423A

pagetop

2011

  1. "One-Pot Synthesis of Water-Soluble Nanoparticles of ZnS-AgInS2 Solid Solution with Controllable Photoluminescence",
    M. Dai, K. Okazaki, A. Kudo, S. Kuwabata, and T. Torimoto, Electrochemistry, 2011, 79, 790-792.
    DOI: 10.5796/electrochemistry.79.790

  2. "Photocatalytic Reduction of Carbon Dioxide over Ag Cocatalyst-Loaded ALa4Ti4O15 (A = Ca, Sr, and Ba) Using Water as a Reducing Reagent",
    K. Iizuka, T. Wato, Y. Miseki, K. Saito, and A. Kudo, J. Am. Chem. Soc., 2011, 133, 20863-20868.
    DOI: 10.1021/ja207586e

  3. "Rh-Doped SrTiO3 Photocatalyst Electrode Showing Cathodic Photocurrent for Water Splitting under Visible-Light Irradiation",
    K. Iwashina, and A. Kudo, J. Am. Chem. Soc., 2011, 133, 13272-13275.
    DOI: 10.1021/ja2050315

  4. "Reduced Graphene Oxide as a Solid-State Electron Mediator in Z-Scheme Photocatalytic Water Splitting under Visible Light",
    A. Iwase, Y. H. Ng, Y. Ishiguro, A. Kudo, and R. Amal, J. Am. Chem. Soc., 2011, 133, 11054-11057.
    DOI: 10.1021/ja203296z

  5. "Flame Preparation of Visible-Light-Responsive BiVO4 Oxygen Evolution Photocatalysts with Subsequent Activation via Aqueous Route",
    Y. K. Kho, W. Y. Teoh, A. Iwase, L. Madler, A. Kudo, and R. Amal, ACS Appl. Mater. Interfaces, 2011, 3, 1997-2004.
    DOI: 10.1021/am200247y

  6. "Molten Salt Treatment of Sodium Niobate Nanowires Affording Valence Band-Controlled (AgNbO3)-(NaNbO3) Nanowires",
    K. Saito, K. Koga, and A. Kudo, J. Nanosci. Nanotechnol., 2011, 3, 686-689.
    DOI: 10.1166/nnl.2011.1226

  7. "Confusion and Neo-Confusion: Corrole Isomers with an NNNC Core",
    K. Fujino, Y. Hirata, Y. Kawabe, T. Morimoto, A. Srinivasan, M. Toganoh, Y. Miseki, A. Kudo, and H. Furuta, Angew. Chem. Int. Ed., 2011, 50, 6855-6859.
    DOI: 10.1002/anie.201100429

  8. "Lithium niobate nanowires for photocatalytic water splitting",
    K. Saito, K. Koga, and A. Kudo, Dalton Trans., 2011, 40, 3909.
    DOI: 10.1039/C0DT01844A

  9. "Water Splitting over New Niobate Photocatalysts with Tungsten-Bronze-Type Structure and Effect of Transition Metal-Doping",
    Y. Miseki, and A. Kudo, ChemSusChem, 2011, 4, 245-251.
    DOI: 10.1002/cssc.201000180

pagetop

2010

  1. "Reducing Graphene Oxide on a Visible-Light BiVO4 Photocatalyst for an Enhanced Photoelectrochemical Water Splitting",
    Y. H. Ng, A. Iwase, A. Kudo, and R. Amal, J. Phys. Chem. Lett., 2010, 1, 2607-2612.
    DOI: 10.1021/jz100978u

  2. "Immobilization of ZnS?AgInS2Solid Solution Nanoparticles on ZnO Rod Array Electrodes and Their Photoresponse with Visible Light Irradiation",
    T. Sasamura, K. Okazaki, R. Tsunoda, A. Kudo, S. Kuwabata, and T. Torimoto, Chem. Lett., 2010, 39, 619-621.
    DOI: 10.1246/cl.2010.619

  3. "Photoelectrochemical water splitting using visible-light-responsive BiVO4 fine particles prepared in an aqueous acetic acid solution",
    A. Iwase, and A. Kudo, J. Mater. Chem., 2010, 20, 7536.
    DOI: 10.1039/C0JM00961J

  4. "Preparation and photoelectrochemical properties of densely immobilized Cu2ZnSnS4 nanoparticle films",
    T. Kameyama, T. Osaki, K. Okazaki, T. Shibayama, A. Kudo, S. Kuwabata, and T. Torimoto, J. Mater. Chem., 2010, 20, 5319.
    DOI: 10.1039/C0JM00454E

  5. "InBO3 Photocatalyst with Calcite Structure for Overall Water Splitting",
    Q. Jia, Y. Miseki, K. Saito, H. Kobayashi, and A. Kudo, Bull. Chem. Soc. Jpn., 2010, 83, 1275-1281.
    DOI: 10.1246/bcsj.20100137

  6. "Photocatalytic hydrogenation of acetophenone derivatives and diaryl ketones on polycrystalline titanium dioxide",
    S. Kohtani, E. Yoshioka, K. Saito, A. Kudo, and H. Miyabe, Catal. Commun., 2010, 11, 1049-1053.
    DOI: 10.1016/j.catcom.2010.04.022

  7. "Solar hydrogen production over novel metal sulfide photocatalysts of AGa2In3S8 (A = Cu or Ag) with layered structures",
    H. Kaga, K. Saito, and A. Kudo, Chem. Commun., 2010, 46, 3779.
    DOI: 10.1039/B927362J

  8. "Remarkable photoluminescence enhancement of ZnS-AgInS2 solid solution nanoparticles by post-synthesis treatment",
    T. Torimoto, S. Ogawa, T. Adachi, T. Kameyama, K. Okazaki, T. Shibayama, A. Kudo, and S. Kuwabata, Chem. Commun., 2010, 46, 2082.
    DOI: 10.1039/B924186H

  9. "Niobium-Complex-Based Syntheses of Sodium Niobate Nanowires Possessing Superior Photocatalytic Properties",
    K. Saito, and A. Kudo, Inorg. Chem., 2010, 49, 2017-2019.
    DOI: 10.1021/ic902107u

  10. "Novel Stannite-type Complex Sulfide Photocatalysts AI2-Zn-AIV-S4(AI= Cu and Ag; AIV= Sn and Ge) for Hydrogen Evolution under Visible-Light Irradiation",
    I. Tsuji, Y. Shimodaira, H. Kato, H. Kobayashi, and A. Kudo, Chem. Mater., 2010, 22, 1402-1409.
    DOI: 10.1021/cm9022024

  11. "A Simple Preparation Method of Visible-Light-Driven BiVO4 Photocatalysts From Oxide Starting Materials (Bi2O3 and V2O5) and Their Photocatalytic Activities",
    A. Iwase, H. Kato, and A. Kudo, J. Sol. Energy Eng., 2010, 132, 021106.
    DOI: 10.1115/1.4001172

  12. "Photocatalytic H2 Evolution over TiO2 Nanoparticles. The Synergistic Effect of Anatase and Rutile",
    Y. K. Kho, A. Iwase, W. Y. Teoh, L. Madler, A. Kudo, and R. Amal, J. Phys. Chem. C, 2010, 114, 2821-2829.
    DOI: 10.1021/jp910810r

pagetop

2009

  1. "Synthesis and photocatalytic performances of BiVO4 by ammonia co-precipitation process",
    J. Yu, Y. Zhang, and A. Kudo, Journal of Solid State Chemistry, 2009, 182, 223-228.
    DOI: 10.1016/j.jssc.2008.10.021

  2. "Solar Water Splitting Using Powdered Photocatalysts Driven by Z-Schematic Interparticle Electron Transfer without an Electron Mediator",
    Y. Sasaki, H. Nemoto, K. Saito, and A. Kudo, J. Phys. Chem. C, 2009, 113, 17536-17542.
    DOI: 10.1021/jp907128k

  3. "The Effect of Alkaline Earth Metal Ion Dopants on Photocatalytic Water Splitting by NaTaO3 Powder",
    A. Iwase, H. Kato, and A. Kudo, ChemSusChem, 2009, 2, 873-877.
    DOI: 10.1002/cssc.200900160

  4. "Enhancement of photocatalytic activity of zinc-germanium oxynitride solid solution for overall water splitting under visible irradiation",
    K. Takanabe, T. Uzawa, X. Wang, K. Maeda, M. Katayama, J. Kubota, A. Kudo, and K. Domen, Dalton Trans., 2009, 10055.
    DOI: 10.1039/B910318J

  5. "Time-Resolved Infrared Absorption Study of NaTaO3 Photocatalysts Doped with Alkali Earth Metals",
    M. Maruyama, A. Iwase, H. Kato, A. Kudo, and H. Onishi, J. Phys. Chem. C, 2009, 113, 13918-13923.
    DOI: 10.1021/jp903142n

  6. "Controlled Synthesis of TT Phase Niobium Pentoxide Nanowires Showing Enhanced Photocatalytic Properties",
    K. Saito, and A. Kudo, Bull. Chem. Soc. Jpn., 2009, 82, 1030-1034.
    DOI: 10.1246/bcsj.82.1030

  7. "Cr/Sb co-doped TiO2 from first principles calculations",
    C. D. Valentin, G. Pacchioni, H. Onishi, and A. Kudo, Chem. Phys. Lett., 2009, 469, 166-171.
    DOI: 10.1016/j.cplett.2008.12.086

  8. "Synthesis of K3Ta3B2O12 photocatalytic material by aqueous solution-based process using a novel water soluble tantalum complex",
    N. Yamatani, V. Petrykin, Y. Matsumoto, K. Tomita, A. Kudo, and M. Kakihana, J. Ceram. Soc. Japan, 2009, 117, 308-312.
    DOI: 10.2109/jcersj2.117.308

  9. "Sensitization of NaMO3 (M: Nb and Ta) Photocatalysts with Wide Band Gaps to Visible Light by Ir Doping",
    A. Iwase, K. Saito, and A. Kudo, Bull. Chem. Soc. Jpn., 2009, 82, 514-518.
    DOI: 10.1246/bcsj.82.514

  10. "Nanocrystalline CaZrTi2O7 Photocatalyst Prepared by a Polymerizable Complex Method in the Presence of Cs2CO3 Flux for Water Splitting",
    Y. Miseki, K. Saito, and A. Kudo, Chem. Lett., 2009, 38, 180-181.
    DOI: 10.1246/cl.2009.180

  11. "Water splitting into H2 and O2 over niobate and titanate photocatalysts with (111) plane-type layered perovskite structure",
    Y. Miseki, H. Kato, and A. Kudo, Energy Environ. Sci., 2009, 2, 306.
    DOI: 10.1039/B818922F

pagetop

2008

  1. "Preparation of BiVO4-MCM-41 composite catalyst and its photocatalytic activity for degradation of methylene blue",
    Y. Zhang, J. Yu, A. Kudo, and X. Zhao, Chinese J. Catal., 2008, 29, 624-628.

  2. "Enhancement of Photo-to-Current Efficiency over Two-Dimensional Bi2MoO6 Nanoplate Thin-Film Photoelectrode",
    J. Yu, Y. Zhang, X. Gao, A. Kudo, and X. S. Zhao, Electrochem. Solid-State Lett., 2008, 11, B197.
    DOI: 10.1149/1.2968955

  3. "Photocatalytic Activities of Layered Titanates and Niobates Ion-Exchanged with Sn2+ under Visible Light Irradiation",
    Y. Hosogi, H. Kato, and A. Kudo, J. Phys. Chem. C, 2008, 112, 17678-17682.
    DOI: 10.1021/jp805693j

  4. "The effect of co-catalyst for Z-scheme photocatalysis systems with an Fe3+/Fe2+ electron mediator on overall water splitting under visible light irradiation",
    Y. Sasaki, A. Iwase, H. Kato, and A. Kudo, J. Catal., 2008, 259, 133-137.
    DOI: 10.1016/j.jcat.2008.07.017

  5. "Photoinduced Dynamics of TiO2 Doped with Cr and Sb",
    T. Ikeda, T. Nomoto, K. Eda, Y. Mizutani, H. Kato, A. Kudo, and H. Onishi, J. Phys. Chem. C, 2008, 112, 1167-1173.
    DOI: 10.1021/jp0752264

  6. "Photoluminescence Enhancement of ZnS-AgInS2 Solid Solution Nanoparticles Layer-by-layer-assembled in Inorganic Multilayer Thin Films",
    T. Kameyama, K. Okazaki, Y. Ichikawa, A. Kudo, S. Kuwabata, and T. Torimoto, Chem. Lett., 2008, 37, 700-701.
    DOI: 10.1246/cl.2008.700

  7. "Loading effects of silver oxides upon generation of reactive oxygen species in semiconductor photocatalysis",
    S. Kohtani, K. Yoshida, T. Maekawa, A. Iwase, A. Kudo, H. Miyabe, and R. Nakagaki, Phys. Chem. Chem. Phys., 2008, 10, 2986.
    DOI: 10.1039/B719913A

  8. "Role of Sn2+ in the Band Structure of SnM2O6 and Sn2M2O7 (M = Nb and Ta) and Their Photocatalytic Properties",
    Y. Hosogi, Y. Shimodaira, H. Kato, H. Kobayashi, and A. Kudo, Chem. Mater., 2008, 20, 1299-1307.
    DOI: 10.1021/cm071588c

  9. "Visible light response of AgLi1/3M2/3O2 (M = Ti and Sn) synthesized from layered Li2MO3 using molten AgNO3",
    Y. Hosogi, H. Kato, and A. Kudo, J. Mater. Chem., 2008, 18, 647-653.
    DOI: 10.1039/B715679K

pagetop

2007

  1. "Facile Synthesis of ZnS-AgInS2 Solid Solution Nanoparticles for a Color-Adjustable Luminophore",
    T. Torimoto, T. Adachi, K. Okazaki, M. Sakuraoka, T. Shibayama, B. Ohtani, A. Kudo, and S. Kuwabata, J. Am. Chem. Soc., 2007, 129, 12388-12389.
    DOI: 10.1021/ja0750470

  2. "Photocatalytic O2 Evolution of Rhodium and Antimony-Codoped Rutile-Type TiO2 under Visible Light Irradiation",
    R. Niishiro, R. Konta, H. Kato, W. Chun, K. Asakura, and A. Kudo, J. Phys. Chem. C, 2007, 111, 17420-17426.
    DOI: 10.1021/jp074707k

  3. "Role of Iron Ion Electron Mediator on Photocatalytic Overall Water Splitting under Visible Light Irradiation Using Z-Scheme Systems",
    H. Kato, Y. Sasaki, A. Iwase, and A. Kudo, Bull. Chem. Soc. Jpn., 2007, 80, 2457-2464.
    DOI: 10.1246/bcsj.80.2457

  4. "Photocatalytic Properties of HCa2Nb3O10 Prepared by Polymerizable Complex Method",
    Y. Yamashita, K. Hyuga, V. Petrykin, M. Kakihana, M. Yoshimura, K. Domen, H. Kato, and A. Kudo, J. Ceram. Soc. Japan, 2007, 115, 511-513.
    DOI: 10.2109/jcersj2.115.511

  5. "Combustion synthesis and photocatalytic properties of transition metal-incorporated ZnO",
    S. Ekambaram, Y. Iikubo, and A. Kudo, J. Alloy. Compd., 2007, 433, 237-240.
    DOI: 10.1016/j.jallcom.2006.06.045

  6. "DFT Method Estimation of Standard Redox Potential of Metal Ions and Metal Complexes",
    Y. Shimodaira, T. Miura, A. Kudo, and H. Kobayashi, J. Chem. Theory Comput., 2007, 3, 789-795.
    DOI: 10.1021/ct700015t

  7. "Investigations of Electronic Structures and Photocatalytic Activities under Visible Light Irradiation of Lead Molybdate Replaced with Chromium(VI)",
    Y. Shimodaira, H. Kato, H. Kobayashi, and A. Kudo, Bull. Chem. Soc. Jpn., 2007, 80, 885-893.
    DOI: 10.1246/bcsj.80.885

  8. "Electronic Structure Analysis of Interface between Support Surface and Cocatalyst for Water Splitting Layer Photocatalyst by DFT Method",
    Y. Shimodaira, A. Kudo, and H. Kobayashi, Chem. Lett., 2007, 36, 170-171.
    DOI: 10.1246/cl.2007.170

  9. "Density Functional Theory Study of Anode Reactions on Pt-Based Alloy Electrodes",
    Y. Shimodaira, T. Tanaka, T. Miura, A. Kudo, and H. Kobayashi, J. Phys. Chem. C, 2007, 111, 272-279.
    DOI: 10.1021/jp064563u

pagetop

2006

  1. "Density Functional Theory Study of Anode Reactions on Pt-Based Alloy Electrodes",
    Y. Shimodaira, T. Tanaka, T. Miura, A. Kudo, and H. Kobayashi, J. Phys. Chem. C, 2006, 111, 272-279.
    DOI: 10.1021/jp064563u

  2. "Synthesis and Structure of New Water-Soluble and Stable Tantalum Compound: Ammonium Tetralactatodiperoxo-μ-oxo-ditantalate(V)",
    V. Petrykin, M. Kakihana, K. Yoshioka, S. Sasaki, Y. Ueda, K. Tomita, Y. Nakamura, M. Shiro, and A. Kudo, Inorg. Chem., 2006, 45, 9251-9256.
    DOI: 10.1021/ic060861u

  3. "Photophysical Properties and Photocatalytic Activities of Bismuth Molybdates under Visible Light Irradiation",
    Y. Shimodaira, H. Kato, H. Kobayashi, and A. Kudo, J. Phys. Chem. B, 2006, 110, 17790-17797.
    DOI: 10.1021/jp0622482

  4. "Effects of Structural Variation on the Photocatalytic Performance of Hydrothermally Synthesized BiVO4",
    J. Yu, and A. Kudo, Adv. Funct. Mater., 2006, 16, 2163-2169.
    DOI: 10.1002/adfm.200500799

  5. "Water Splitting into H2and O2over Ba5Nb4O15Photocatalysts with Layered Perovskite Structure Prepared by Polymerizable Complex Method",
    Y. Miseki, H. Kato, and A. Kudo, Chem. Lett., 2006, 35, 1052-1053.
    DOI: 10.1246/cl.2006.1052

  6. "Nanosized Au Particles as an Efficient Cocatalyst for Photocatalytic Overall Water Splitting",
    A. Iwase, H. Kato, and A. Kudo, Catal. Lett., 2006, 108, 7-10.
    DOI: 10.1007/s10562-006-0030-1

  7. "Synthesis of SnNb2O6 Nanoplates and Their Photocatalytic Properties",
    Y. Hosogi, H. Kato, and A. Kudo, Chem. Lett., 2006, 35, 578-579.
    DOI: 10.1246/cl.2006.578

  8. "Time-Resolved Infrared Spectroscopy of K3Ta3B2O12 Photocatalysts for Water Splitting",
    T. Ikeda, S. Fujiyoshi, H. Kato, A. Kudo, and H. Onishi, J. Phys. Chem. B, 2006, 110, 7883-7886.
    DOI: 10.1021/jp057536x

  9. "Photocatalytic Hydrogen Evolution on ZnS-CuInS2-AgInS2 Solid Solution Photocatalysts with Wide Visible Light Absorption Bands",
    I. Tsuji, H. Kato, and A. Kudo, Chem. Mater., 2006, 18, 1969-1975.
    DOI: 10.1021/cm0527017

  10. "Highly Efficient Water Splitting over K3Ta3B2O12Photocatalyst without Loading Cocatalyst",
    T. Kurihara, H. Okutomi, Y. Miseki, H. Kato, and A. Kudo, Chem. Lett., 2006, 35, 274-275.
    DOI: 10.1246/cl.2006.274

pagetop

2005

  1. "Hydrothermal Synthesis and Photocatalytic Property of 2-Dimensional Bismuth Molybdate Nanoplates",
    J. Yu, and A. Kudo, Chem. Lett., 2005, 34, 1528-1529.
    DOI: 10.1246/cl.2005.1528

  2. "Photoreductive Defluorination of Hexafluorobenzene on Metal-doped ZnS Photocatalysts under Visible Light Irradiation",
    S. Kohtani, Y. Ohama, Y. Ohno, I. Tsuji, A. Kudo, and R. Nakagaki, Chem. Lett., 2005, 34, 1056-1057.
    DOI: 10.1246/cl.2005.1056

  3. "A Novel Photodeposition Method in the Presence of Nitrate Ions for Loading of an Iridium Oxide Cocatalyst for Water Splitting",
    A. Iwase, H. Kato, and A. Kudo, Chem. Lett., 2005, 34, 946-947.
    DOI: 10.1246/cl.2005.946

  4. "Hydrothermal Synthesis of Nanofibrous Bismuth Vanadate",
    J. Yu, and A. Kudo, Chem. Lett., 2005, 34, 850-851.
    DOI: 10.1246/cl.2005.850

  5. "Nickel and either tantalum or niobium-codoped TiO2 and SrTiO3 photocatalysts with visible-light response for H2 or O2 evolution from aqueous solutions",
    R. Niishiro, H. Kato, and A. Kudo, Phys. Chem. Chem. Phys., 2005, 7, 2241.
    DOI: 10.1039/B502147B

  6. "The relationship between photocatalytic activity and crystal structure in strontium tantalates",
    K. Yoshioka, V. Petrykin, M. Kakihana, H. Kato, and A. Kudo, J. Catal., 2005, 232, 102-107.
    DOI: 10.1016/j.jcat.2005.02.021

  7. "Visible-Light-Induced H2 Evolution from an Aqueous Solution Containing Sulfide and Sulfite over a ZnS-CuInS2-AgInS2 Solid-Solution Photocatalyst",
    I. Tsuji, H. Kato, and A. Kudo, Angew. Chem. Int. Ed., 2005, 44, 3565-3568.
    DOI: 10.1002/anie.200500314

  8. "Photocatalytic H2 Evolution under Visible-Light Irradiation over Band-Structure-Controlled (CuIn)xZn2(1-x)S2 Solid Solutions",
    I. Tsuji, H. Kato, H. Kobayashi, and A. Kudo, J. Phys. Chem. B, 2005, 109, 7323-7329.
    DOI: 10.1021/jp044722e

  9. "Adsorptive and photocatalytic properties of Ag-loaded BiVO4 on the degradation of 4-n-alkylphenols under visible light irradiation",
    S. Kohtani, J. Hiro, N. Yamamoto, A. Kudo, K. Tokumura, and R. Nakagaki, Catalysis Communications, 2005, 6, 185-189.
    DOI: 10.1016/j.catcom.2004.12.006

  10. "Water Splitting into H2and O2 over Cs2Nb4O11 Photocatalyst",
    Y. Miseki, H. Kato, and A. Kudo, Chem. Lett., 2005, 34, 54-55.
    DOI: 10.1246/cl.2005.54

pagetop

2004

  1. "Electrochemical approach to evaluate the mechanism of photocatalytic water splitting on oxide photocatalysts",
    Y. Matsumoto, U. Unal, N. Tanaka, A. Kudo, and H. Kato, Journal of Solid State Chemistry, 2004, 177, 4205-4212.
    DOI: 10.1016/j.jssc.2004.08.001

  2. "DFT Study for CO and H2 Adsorption and Related Reactions on Pt alloy Electrode",
    Y. Shimodaira, T. Miura, T. Okumachi, T. Yamabe, A. Kudo, and H. Kobayashi, Electrochemistry, 2004, 72, 865-869.
    DOI: 10.5796/electrochemistry.72.865

  3. "DFT Method Estimation of Standard Redox Potential of Metal Ions and Metal Complexes",
    Y. Shimodaira, T. Miura, A. Kudo, and H. Kobayashi, J. Chem. Theory Comput., 2007, 3, 789-795.
    DOI: 10.1021/ct700015t

  4. "Formation of Surface Nano-step Structures and Improvement of Photocatalytic Activities of NaTaO3 by Doping of Alkaline Earth Metal Ions",
    A. Iwase, H. Kato, H. Okutomi, and A. Kudo, Chem. Lett., 2004, 33, 1260-1261.
    DOI: 10.1246/cl.2004.1260

  5. "Construction of Z-scheme Type Heterogeneous Photocatalysis Systems for Water Splitting into H2and O2 under Visible Light Irradiation",
    H. Kato, M. Hori, R. Konta, Y. Shimodaira, and A. Kudo, Chem. Lett., 2004, 33, 1348-1349.
    DOI: 10.1246/cl.2004.1348

  6. "Photophysical and Photocatalytic Properties of Molybdates and Tungstates with a Scheelite Structure",
    H. Kato, N. Matsudo, and A. Kudo, Chem. Lett., 2004, 33, 1216-1217.
    DOI: 10.1246/cl.2004.1216

  7. "Photocatalytic H2 Evolution Reaction from Aqueous Solutions over Band Structure-Controlled (AgIn)xZn2(1-x)S2 Solid Solution Photocatalysts with Visible-Light Response and Their Surface Nanostructures",
    I. Tsuji, H. Kato, H. Kobayashi, and A. Kudo, J. Am. Chem. Soc., 2004, 126, 13406-13413.
    DOI: 10.1021/ja048296m

  8. "Photodegradeation of 4-n-nonylphenol and natural estrogens using heterogeneous visible-light-driven AgNbO3 or BiVO4 photocatalyst",
    S. Kohtani, N. Yamamoto, K. Kitajima, A. Kudo, H. Kato, K. Tokumura, K. Hayakawa, and R. Nakagaki, Photo/Electrochem. Photobiol. Environ. Energy and Fuel, 2004, 173-184.

  9. "Photocatalytic Activities of Noble Metal Ion Doped SrTiO3 under Visible Light Irradiation",
    R. Konta, T. Ishii, H. Kato, and A. Kudo, J. Phys. Chem. B, 2004, 108, 8992-8995.
    DOI: 10.1021/jp049556p

  10. "Energy Structure and Photocatalytic Activity of Niobates and Tantalates Containing Sn(II) with a 5s2 Electron Configuration",
    Y. Hosogi, K. Tanabe, H. Kato, H. Kobayashi, and A. Kudo, Chem. Lett., 2004, 33, 28-29.
    DOI: 10.1246/cl.2004.28

  11. "H2 evolution from an aqueous methanol solution on SrTiO3 photocatalysts codoped with chromium and tantalum ions under visible light irradiation",
    T. Ishii, H. Kato, and A. Kudo, Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163, 181-186.
    DOI: 10.1016/S1010-6030(03)00442-8

pagetop

2003

  1. "Photodynamics of NaTaO3 Catalysts for Efficient Water Splitting",
    A. Yamakata, T. Ishibashi, H. Kato, A. Kudo, and H. Onishi, J. Phys. Chem. B, 2003, 107, 14383-14387.
    DOI: 10.1021/jp036473k

  2. "Photodegradation of 4-alkylphenols using BiVO4 photocatalyst under irradiation with visible light from a solar simulator",
    S. Kohtani, M. Koshiko, A. Kudo, K. Tokumura, Y. Ishigaki, A. Toriba, K. Hayakawa, and R. Nakagaki, Appl. Catal. B Environ., 2003, 46, 573-586.
    DOI: 10.1016/S0926-3373(03)00320-5

  3. "Photophysical properties and photocatalytic activities under visible light irradiation of silver vanadates",
    R. Konta, H. Kato, H. Kobayashi, and A. Kudo, Phys. Chem. Chem. Phys., 2003, 5, 3061.
    DOI: 10.1039/B300179B

  4. "H2 evolution from aqueous sulfite solutions under visible-light irradiation over Pb and halogen-codoped ZnS photocatalysts",
    I. Tsuji, and A. Kudo, J. Photochem. Photobiol. A, 2003, 156, 249-252.
    DOI: 10.1016/S1010-6030(02)00433-1

  5. "Highly Efficient Water Splitting into H2 and O2 over Lanthanum-Doped NaTaO3 Photocatalysts with High Crystallinity and Surface Nanostructure",
    H. Kato, K. Asakura, and A. Kudo, J. Am. Chem. Soc., 2003, 125, 3082-3089.
    DOI: 10.1021/ja027751g

pagetop

2002

  1. "H2 Evolution from Aqueous Potassium Sulfite Solutions under Visible Light Irradiation over a Novel Sulfide Photocatalyst NaInS2 with a Layered Structure",
    A. Kudo, A. Nagane, I. Tsuji, and H. Kato, Chem. Lett., 2002, 31, 882-883.
    DOI: 10.1246/cl.2002.882

  2. "Reduction of Nitrate and Nitrite Ions over Ni-ZnS Photocatalyst under Visible Light Irradiation in the Presence of a Sacrificial Reagent",
    O. Hamanoi, and A. Kudo, Chem. Lett., 2002, 31, 838-839.
    DOI: 10.1246/cl.2002.838

  3. "AgInZn7S9 solid solution photocatalyst for H2 evolution from aqueous solutions under visible light irradiation",
    A. Kudo, I. Tsuji, and H. Kato, Chem. Commun., 2002, 1958-1959.
    DOI: 10.1039/B204259B

  4. "Role of Ag+ in the Band Structures and Photocatalytic Properties of AgMO3 (M: Ta and Nb) with the Perovskite Structure",
    H. Kato, H. Kobayashi, and A. Kudo, J. Phys. Chem. B, 2002, 106, 12441-12447.
    DOI: 10.1021/jp025974n

  5. "Photocatalytic Degradation of 4-n-Nonylphenol under Irradiation from Solar Simulator: Comparison between BiVO4and TiO2 Photocatalysts",
    S. Kohtani, S. Makino, A. Kudo, K. Tokumura, Y. Ishigaki, T. Matsunaga, O. Nikaido, K. Hayakawa, and R. Nakagaki, Chem. Lett., 2002, 31, 660-661.
    DOI: 10.1246/cl.2002.660

  6. "Visible-Light-Response and Photocatalytic Activities of TiO2 and SrTiO3 Photocatalysts Codoped with Antimony and Chromium",
    H. Kato, and A. Kudo, J. Phys. Chem. B, 2002, 106, 5029-5034.
    DOI: 10.1021/jp0255482

  7. "Photocatalytic reduction of nitrate ions over tantalate photocatalysts",
    H. Kato, and A. Kudo, Phys. Chem. Chem. Phys., 2002, 4, 2833-2838.
    DOI: 10.1039/B110511F

  8. "Polymerizable Complex Synthesis of Pure Sr2NbxTa2-xO7 Soli",
    M. Yoshino, M. Kakihana, W. S. Cho, H. Kato, and A. Kudo, Chem. Mater., 2002, 14, 3369-3376.
    DOI: 10.1021/cm0109037

pagetop

2001

  1. "Energy structure and photocatalytic activity for water splitting of Sr2(Ta1-xNbx)2O7 solid solution",
    H. Kato, and A. Kudo, J. Photochem. Photobiol. A, 2001, 145, 129-133.
    DOI: 10.1016/S1010-6030(01)00574-3

  2. "Selective Preparation of Monoclinic and Tetragonal BiVO4 with Scheelite Structure and Their Photocatalytic Properties",
    S. Tokunaga, H. Kato, and A. Kudo, Chem. Mater., 2001, 13, 4624-4628.
    DOI: 10.1021/cm0103390

  3. "Overall water splitting by sonophotocatalytic reaction: the role of powdered photocatalyst and an attempt to decompose water using a visible-light sensitive photocatalyst",
    H. Harada, C. Hosoki, and A. Kudo, J. Photochem. Photobiol. A, 2001, 141, 219-224.
    DOI: 10.1016/S1010-6030(01)00445-2

  4. "Water Splitting into H2 and O2 on Alkali Tantalate Photocatalysts ATaO3 (A = Li, Na, and K)",
    H. Kato, and A. Kudo, J. Phys. Chem. B, 2001, 105, 4285-4292.
    DOI: 10.1021/jp004386b

pagetop

2000

  1. "Effect of lanthanide-doping into NaTaO3 photocatalysts for efficient water splitting",
    A. Kudo, and H. Kato, Chem. Phys. Lett., 2000, 331, 373-377.
    DOI: 10.1016/S0009-2614(00)01220-3

  2. "Photocatalytic Water Splitting into H2and O2over K2LnTa5O15Powder",
    A. Kudo, H. Okutomi, and H. Kato, Chem. Lett., 2000, 29, 1212-1213.
    DOI: 10.1246/cl.2000.1212

  3. "Photocatalytic H2 evolution under visible light irradiation on Ni-doped ZnS photocatalyst",
    A. Kudo, and M. Sekizawa, Chem. Commun., 2000, 1371-1372.
    DOI: 10.1039/B003297M

  4. "Water Splitting into H2 and O2 on New Sr2M2O7 (M = Nb and Ta) Photocatalysts with Layered Perovskite Structures: Factors Affecting the Photocatalytic Activity",
    A. Kudo, H. Kato, and S. Nakagawa, J. Phys. Chem. B, 2000, 104, 571-575.
    DOI: 10.1021/jp9919056

pagetop

1999

  1. "A Novel Aqueous Process for Preparation of Crystal Form-Controlled and Highly Crystalline BiVO4 Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and Photophysical Properties",
    A. Kudo, K. Omori, and H. Kato, J. Am. Chem. Soc., 1999, 121, 11459-11467.
    DOI: 10.1021/ja992541y

  2. "Photocatalytic Decomposition of Pure Water into H2and O2over SrTa2O6Prepared by a Flux Method",
    H. Kato, and A. Kudo, Chem. Lett., 1999, 28, 1207-1208.
    DOI: 10.1246/cl.1999.1207

  3. "Overall Water Splitting into H2and O2under UV Irradiation on NiO-loaded ZnNb2O6Photocatalysts Consisting of d10and d0Ions",
    A. Kudo, S. Nakagawa, and H. Kato, Chem. Lett., 1999, 28, 1197-1198.
    DOI: 10.1246/cl.1999.1197

  4. "H2or O2Evolution from Aqueous Solutions on Layered Oxide Photocatalysts Consisting of Bi3+with 6s2Configuration and d0Transition Metal Ions",
    A. Kudo, and S. Hijii, Chem. Lett., 1999, 28, 1103-1104.
    DOI: 10.1246/cl.1999.1103

  5. "Ultraviolet Luminescence of Rb4Ta6O17with a Layered Structure",
    A. Kudo, T. Shibata, and H. Kato, Chem. Lett., 1999, 28, 959-960.
    DOI: 10.1246/cl.1999.959

  6. "Photocatalytic H2 Evolution under Visible Light Irradiation on Zn1-xCuxS Solution Photocatalysts",
    A. Kudo, and M. Sekizawa, Catal. Lett., 1999, 58, 241-243.
    DOI: 10.1023/A:1019067025917

  7. "Highly Efficient Decomposition of Pure Water into H2 and O2 over NaTaO3 Photocatalysts",
    H. Kato, and A. Kudo, Catal. Lett., 1999, 58, 153-155.
    DOI: 10.1023/a:1019082001809

pagetop

1998

  1. "New In2O3(ZnO)mPhotocatalysts with Laminal Structure for Visible Light-induced H2or O2Evolution from Aqueous Solutions Containing Sacrificial Reagents",
    A. Kudo, and I. Mikami, Chem. Lett., 1998, 27, 1027-1028.
    DOI: 10.1246/cl.1998.1027

  2. "Photocatalytic activities and photophysical properties of Ga2-xInxO3 solid solution",
    A. Kudo, and I. Mikami, Faraday Trans., 1998, 94, 2929-2932.
    DOI: 10.1039/A805563G

  3. "New tantalate photocatalysts for water decomposition into H2 and O2",
    H. Kato, and A. Kudo, Chem. Phys. Lett., 1998, 295, 487-492.
    DOI: 10.1016/S0009-2614(98)01001-X

  4. "Photocatalytic O2 Evolution under Visible Light Irradiation on BiVO4 in Aqueous AgNO3 Solution",
    A. Kudo, K. Ueda, H. Kato, and I. Mikami, Catal. Lett., 1998, 53, 229-230.
    DOI: 10.1023/A:3A1019034728816

  5. "Electrochemical Reduction of NO on ZnO and In2O3Semiconductor Electrodes in Aqueous K2SO4Solutions",
    A. Kudo, K. Watanabe, Y. Minakata, and A. Mine, Chem. Lett., 1998, 27, 391-392.
    DOI: 10.1246/cl.1998.391

  6. "Photocatalytic Reduction of N2O on Metal-supported TiO2 Powder at Room Temperature in the Presence of H2O and CH3OH Vapor",
    A. Kudo, and H. Nagayoshi, Catal. Lett., 1998, 52, 109-111.
    DOI: 10.1023/A:1019050815670

  7. "Photoluminescent properties of ion-exchangeable layered oxides",
    A. Kudo, and E. Kaneko, Microporous Mesoporous Mater., 1998, 21, 615-620.
    DOI: 10.1016/S1387-1811(98)00037-7

pagetop

1997

  1. "Photocatalytic Decomposition of Water into H2and O2over Novel Photocatalyst K3Ta3Si2O13with Pillared Structure Consisting of Three TaO6 Chains",
    A. Kudo, and H. Kato, Chem. Lett., 1997, 26, 867-868.
    DOI: 10.1246/cl.1997.867

  2. "Photocatalytic Activities of Na2W4O13 with Layered Structure",
    A. Kudo, and H. Kato, Chem. Lett., 1997, 26, 421-422.
    DOI: 10.1246/cl.1997.421

  3. "Electrocatalytic reduction of nitrous oxide on metal and oxide electrodes in aqueous solution",
    A. Kudo, and A. Mine, Appl. Surf. Sci., 1997, 121-122, 538-542.
    DOI: 10.1016/S0169-4332(97)00362-0

  4. "Change in the product selectivity for the electrochemical CO2 reduction by adsorption of sulfide ion on metal electrodes",
    K. Hara, A. Tsuneto, A. Kudo, and T. Sakata, J. Electroanal. Chem., 1997, 434, 239-243.
    DOI: 10.1016/S0022-0728(97)00045-4

  5. "Electrochemical CO2 reduction on a glassy carbon electrode under high pressure",
    K. Hara, A. Kudo, and T. Sakata, J. Electroanal. Chem., 1997, 421, 1-4.
    DOI: 10.1016/S0022-0728(96)01028-5

  6. "High efficiency electrochemical reduction of N2O on ZnO and In2O3 oxide semiconductor electrodes",
    A. Kudo, and A. Mine, J. Electroanal. Chem., 1997, 426, 1-3.
    DOI: 10.1016/S0022-0728(97)00038-7

  7. "Photoluminescent and photocatalytic properties of layered caesium titanates, Cs2TinO2n+1 (n=2, 5, 6)",
    A. Kudo, and T. Kondo, J. Mater. Chem., 1997, 7, 777-780.
    DOI: 10.1039/A606297K

  8. "Photochemical host-guest interaction in Tb3+ and Eu3+ ion-exchanged K2-xHxTi2O5 layered oxides",
    A. Kudo, and E. Kaneko, Chem. Commun., 1997, 349-350.
    DOI: 10.1039/A606338A

  9. "Active Electrochemical Dissolution of Molybdenum and Application for Room-Temperature Synthesis of Crystallized Luminescent Calcium Molybdate Film",
    W. Cho, M. Yashima, M. Kakihana, A. Kudo, T. Sakata, and M. Yoshimura, J. Am. Ceram. Soc., 1997, 80, 765-769.
    DOI: 10.1111/j.1151-2916.1997.tb02895.x

  10. "Luminescent Properties of Rare-Earth-Metal Ion-Doped KLaNb2O7 with Layered Perovskite Structures",
    A. Kudo, Chem. Mater., 1997, 9, 664-669.
    DOI: 10.1021/cm9602149

  11. "Photoluminescence of layered perovskite oxides with triple-octahedra slabs containing titanium and niobium",
    A. Kudo, and E. Kaneko, J. Mater. Sci. Lett., 1997, 16, 224-226.
    DOI: 10.1023/A:1018503824102

pagetop

1996

  1. "Effect of Ion Exchange on Photoluminescence of Layered Niobates K4Nb6O17 and KNb3O8",
    A. Kudo, and T. Sakata, J. Phys. Chem., 1996, 100, 17323-17326.
    DOI: 10.1021/jp9619806

  2. "Electrochemical Reduction of N2O on Gas-Diffusion Electrodes",
    N. Konishi, K. Hara, A. Kudo, and T. Sakata, Bull. Chem. Soc. Jpn., 1996, 69, 2159-2162.
    DOI: 10.1246/bcsj.69.2159

  3. "Electroluminescence of TiO2 film and TiO2:Cu2+ film prepared by the sol-gel method",
    T. Houzouji, N. Saito, A. Kudo, and T. Sakata, Chem. Phys. Lett., 1996, 254, 109-113.
    DOI: 10.1016/0009-2614(96)00284-9

  4. "Electrocatalysis for N2O reduction on metal electrodes",
    A. Kudo, and A. Mine, J. Electroanal. Chem., 1996, 408, 267-269.
    DOI: 10.1016/0022-0728(96)04630-X

  5. "Synthesis of Tungstate Thin Films and Their Optical Properties",
    N. Saito, A. Kudo, and T. Sakata, Bull. Chem. Soc. Jpn., 1996, 69, 1241-1245.
    DOI: 10.1246/bcsj.69.1241

  6. "Room-temperature preparation of crystallized luminescent Sr1-xCaxWO4 solid-solution films by an electrochemical method",
    W. Cho, M. Yashima, M. Kakihana, A. Kudo, T. Sakata, and M. Yoshimura, Appl. Phys. Lett., 1996, 68, 137-139.
    DOI: 10.1063/1.116781

pagetop

1995

  1. "Room-Temperature Preparation of Highly Crystallized Luminescent SrWO4 Film by an Electrochemical Method",
    W. Cho, M. Yashima, M. Kakihana, A. Kudo, T. Sakata, and M. Yoshimura, J. Am. Ceram. Soc., 1995, 78, 3110-3112.
    DOI: 10.1111/j.1151-2916.1995.tb09091.x

  2. "The Optical and Photoelectrochemical Properties of Electrodeposited CdS and SnS Thin Films",
    A. Adachi, A. Kudo, and T. Sakata, Bull. Chem. Soc. Jpn., 1995, 68, 3283-3288.
    DOI: 10.1246/bcsj.68.3283

  3. "Luminescent Properties of Nondoped and Rare Earth Metal Ion-Doped K2La2Ti3O10 with Layered Perovskite Structures: Importance of the Hole Trap Process",
    A. Kudo, and T. Sakata, J. Phys. Chem., 1995, 99, 15963-15967.
    DOI: 10.1021/j100043a040

  4. "Photoelectrochemical Properties of RuS2-Coated TiO2Electrodes",
    M. Ashokkumar, A. Kudo, and T. Sakata, Bull. Chem. Soc. Jpn., 1995, 68, 2491-2496.
    DOI: 10.1246/bcsj.68.2491

  5. "Electrochemical reduction of high pressure CO2 at Pb, Hg and In electrodes in an aqueous KHCO3 solution",
    M. Todoroki, K. Hara, A. Kudo, and T. Sakata, J. Electroanal. Chem., 1995, 394, 199-203.
    DOI: 10.1016/0022-0728(95)04010-L

  6. "Electrochemical reduction of carbon dioxide under high pressure on various electrodes in an aqueous electrolyte",
    K. Hara, A. Kudo, and T. Sakata, J. Electroanal. Chem., 1995, 391, 141-147.
    DOI: 10.1016/0022-0728(95)03935-A

  7. "Electrochemical reduction of high pressure carbon dioxide on Fe electrodes at large current density",
    K. Hara, A. Kudo, and T. Sakata, J. Electroanal. Chem., 1995, 386, 257-260.
    DOI: 10.1016/0022-0728(95)03917-6

  8. "High Efficiency Electrochemical Reduction of Carbon Dioxide under High Pressure on a Gas Diffusion Electrode Containing Pt Catalysts",
    K. Hara, A. Kudo, T. Sakata, and M. Watanabe, J. Electrochem. Soc., 1995, 142, L57-L59.
    DOI: 10.1149/1.2044182

  9. "Room‐temperature preparation of the highly crystallized luminescent CaWO4 film by an electrochemical method",
    W. Cho, M. Yashima, M. Kakihana, A. Kudo, T. Sakata, and M. Yoshimura, Appl. Phys. Lett., 1995, 66, 1027-1029.
    DOI: 10.1063/1.113563

  10. "Synthesis and characterization of RuS2 nanocrystallites",
    M. Ashokkumar, A. Kudo, and T. Sakata, J. Mater. Sci., 1995, 30, 2759-2764.
    DOI: 10.1007/BF00349641

pagetop

1994

  1. "Semiconductor sensitization by RuS2 colloids on TiO2 electrodes",
    M. Ashokkumar, A. Kudo, N. Saito, and T. Sakata, Chem. Phys. Lett., 1994, 229, 383-388.
    DOI: 10.1016/0009-2614(94)01098-6

  2. "Photoluminescence of Layered Potassium Niobates (K4Nb6O17and KNb3O8) and Effects of Hydration and H+-exchange on the Luminescence Properties",
    A. Kudo, and T. Sakata, Chem. Lett., 1994, 23, 2179-2182.
    DOI: 10.1246/cl.1994.2179

  3. "Electrochemical Reduction of CO2 on a Cu Electrode under High Pressure: Factors that Determine the Product Selectivity",
    K. Hara, A. Tsuneto, A. Kudo, and T. Sakata, J. Electrochem. Soc., 1994, 141, 2097-2103.
    DOI: 10.1149/1.2055067

  4. "Lithium-mediated electrochemical reduction of high pressure N2 to NH3",
    A. Tsuneto, A. Kudo, and T. Sakata, J. Electrochem. Soc., 1994, 367, 183-188.
    DOI: 10.1016/0022-0728(93)03025-K

pagetop

1993

  1. "Photoluminescence of Layered Alkali-metal Titanates (A2TinO2n+1, A; Na, K) at 300 and 77K",
    A. Kudo and T. Sakata, J. Mater. Chem., 1993, 3, 1081-1082.

  2. "Efficient Electrochemical Reduction of N2to NH3Catalyzed by Lithium",
    A. Tsuneto, A. Kudo, and T. Sakata, Chem. Lett., 1993, 22, 851-854.
    DOI: 10.1246/cl.1993.851

  3. "Electroluminescence of Al2O3 electrode modified with fine particulate semiconductors",
    N. Saito, A. Kudo, S. Ohshima, I. Oonishi, and T. Sakata, Chem. Phys. Lett., 1993, 208, 39-42.
    DOI: 10.1016/0009-2614(93)80073-X

  4. "Electrochemical Reduction of High Pressure CO2 on Ni Electrodes",
    A. Kudo, S. Nakagawa, A. Tsuneto, and T. Sakata, J. Electrochem. Soc., 1993, 140, 1541-1545.
    DOI: 10.1149/1.2221599

  5. "Spectral sensitization of a TiO2 semiconductor electrode by CdS microcrystals and its photoelectrochemical properties",
    S. Kohtani, A. Kudo, and T. Sakata, Chem. Phys. Lett., 1993, 206, 166-170.
    DOI: 10.1016/0009-2614(93)85535-V

pagetop

1992

  1. "Photocatalytic Decomposition of N2O at Room Temperature",
    A. Kudo, and T. Sakata, Chem. Lett., 1992, 21, 2381-2384.
    DOI: 10.1246/cl.1992.2381

  2. "Hydrogenation of Solid State Carbonates",
    A. Tsuneto, A. Kudo, N. Saito, and T. Sakata, Chem. Lett., 1992, 21, 831-834.
    DOI: 10.1246/cl.1992.831

  3. "Photocatalytic Hydrogen Evolution from Aqueous Methanol Solution on Niobic Acid",
    A. Kudo, A. Tanaka, K. Domen, K. Maruya, and T. Onishi, Bull. Chem. Soc. Jpn., 1992, 65, 1202-1206.
    DOI: 10.1246/bcsj.65.1202

  4. "Reduction of nitrate ions into nitrite and ammonia over some photocatalysts",
    A. Kudo, K. Domen, K. Maruya, and T. Onishi, J. Catal., 1992, 135, 300-303.
    DOI: 10.1016/0021-9517(92)90287-R

pagetop

1991

  1. "Effect of pressure on the electrochemical reduction of CO2 on Group VIII metal electrodes",
    S. Nakagawa, A. Kudo, M. Azuma, and T. Sakata, J. Electroanal. Chem., 1991, 308, 339-343.
    DOI: 10.1016/0022-0728(91)85080-9

pagetop

1990

  1. "Overall photodecomposition of water on a layered niobiate catalyst",
    K. Domen, A. Kudo, A. Tanaka, and T. Onishi, Catal. Today, 1990, 8, 77-84.
    DOI: 10.1016/0920-5861(90)87009-R

  2. "Photoelectrochemical Properties of Titanium Dioxide Electrodes Prepared from a Titanium‐Aluminum Alloy",
    A. Kudo, M. Steinberg, A. J. Bard, A. Campion, M. A. Fox, T. E. Mallouk, S. E. Webber, and J. M. White, J. Electrochem. Soc., 1990, 137, 3846-3849.
    DOI: 10.1149/1.2086311

  3. "Reduction at 300 K of NO by CO over supported platinum catalysts",
    A. Kudo, M. Steinberg, A. J. Bard, A. Campion, M. A. Fox, T. E. Mallouk, S. E. Webber, and J. M. White, J. Catal., 1990, 125, 565-567.
    DOI: 10.1016/0021-9517(90)90327-G

  4. "Photoactivity of ternary lead-group IVB oxides for hydrogen and oxygen evolution",
    A. Kudo, M. Steinberg, A. J. Bard, A. Campion, M. A. Fox, T. E. Mallouk, S. E. Webber, and J. M. White, Catal. Lett., 1990, 5, 61-66.
    DOI: 10.1007/BF00772094

pagetop

1989

  1. "Nickel-loaded K4Nb6O17 photocatalyst in the decomposition of H2O into H2 and O2: Structure and reaction mechanism",
    A. Kudo, K. Sayama, A. Tanaka, K. Asakura, K. Domen, K. Maruya, and T. Onishi, J. Catal., 1989, 120, 337-352.
    DOI: 10.1016/0021-9517(89)90274-1

pagetop

1988

  1. "H2Evolution from Various Aqueous Solutions over Thermally Reduced TiO2and Pt?TiO2Powder",
    A. Kudo, K. Domen, K. Maruya, and T. Onishi, Bull. Chem. Soc. Jpn., 1988, 61, 1535-1538.
    DOI: 10.1246/bcsj.61.1535

  2. "H2 evolution caused by electron transfer between different semiconductors under visible light irradiation",
    J. Yoshimura, A. Kudo, A. Tanaka, K. Domen, K. Maruya, and T. Onishi, Chem. Phys. Lett., 1988, 147, 401-404.
    DOI: 10.1016/0009-2614(88)80256-2

  3. "The effects of the calcination temperature of SrTiO3 powder on photocatalytic activities",
    A. Kudo, A. Tanaka, K. Domen, and T. Onishi, J. Catal., 1988, 111, 296-301.
    DOI: 10.1016/0021-9517(88)90088-7

  4. "Photocatalytic decomposition of water over Ni-K4Nb6O17 catalyst",
    A. Kudo, A. Tanaka, K. Domen, K. Maruya, K. Aika, and T. Onishi, J. Catal., 1988, 111, 67-76.
    DOI: 10.1016/0021-9517(88)90066-8

  5. "The Photocatalytic Activity of a Platinized Titanium Dioxide Catalyst Supported over Silica",
    K. Domen, Y. Sakata, A. Kudo, K. Maruya, and T. Onishi, Bull. Chem. Soc. Jpn., 1988, 61, 359-362.
    DOI: 10.1246/bcsj.61.359

pagetop

1987

  1. "Photocatalytic Reduction of NO3-i to Form NH3 over Pt-TiO2",
    A. Kudo, K. Domen, K. Maruya, and T. Onishi, Chem. Lett., 1987, 16, 1019-1022.
    DOI: 10.1246/cl.1987.1019

  2. "Photocatalytic Activities of Layered Titanium Compounds and Their Derivatives for H2Evolution from Aqueous Methanol Solution",
    M. Shibata, A. Kudo, A. Tanaka, K. Domen, K. Maruya, and T. Onishi, Chem. Lett., 1987, 16, 1017-1018.
    DOI: 10.1246/cl.1987.1017

  3. "Photocatalytic activities of TiO2 loaded with NiO",
    A. Kudo, K. Domen, K. Maruya, and T. Onishi, Chem. Phys. Lett., 1987, 133, 517-519.
    DOI: 10.1016/0009-2614(87)80070-2

pagetop

1986

  1. "Novel photocatalysts, ion-exchanged K4Nb6O17, with a layer structure",
    K. Domen, A. Kudo, M. Shibata, A. Tanaka, K. Maruya, and T. Onishi, J. Chem. Soc., Chem. Commun., 1986, 1706.
    DOI: 10.1039/C39860001706

  2. "Mechanism of photocatalytic decomposition of water into H2 and O2 over NiO-SrTiO3",
    K. Domen, A. Kudo, and T. Onishi, J. of Catal., 1986, 102, 92-98.
    DOI: 10.1016/0021-9517(86)90143-0

  3. "Photodecomposition of water and hydrogen evolution from aqueous methanol solution over novel niobate photocatalysts",
    K. Domen, A. Kudo, A. Shinozaki, A. Tanaka, K. Maruya, and T. Onishi, J. Chem. Soc., Chem. Commun., 1986, 356.
    DOI: 10.1039/C39860000356

  4. "Photocatalytic decomposition of water into hydrogen and oxygen over nickel(II) oxide-strontium titanate (SrTiO3) powder. 1. Structure of the catalysts",
    K. Domen, A. Kudo, T. Onishi, N. Kosugi, and H. Kuroda, J. Phys. Chem., 1986, 90, 292-295.
    DOI: 10.1021/j100274a018

pagetop